Cargando…

PD-L1 mediates lung fibroblast to myofibroblast transition through Smad3 and β-catenin signaling pathways

Programmed death ligand-1 (PD-L1) is an immune checkpoint protein that has been linked with idiopathic pulmonary fibrosis (IPF) and fibroblast to myofibroblast transition (FMT). However, it remains largely unclear how PD-L1 mediates this process. We found significantly increased PD-L1 in the lungs o...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Xia, Sunil, Christudas, Adeyanju, Oluwaseun, Parker, Andrew, Huang, Steven, Ikebe, Mitsuo, Tucker, Torry A., Idell, Steven, Qian, Guoqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866514/
https://www.ncbi.nlm.nih.gov/pubmed/35197539
http://dx.doi.org/10.1038/s41598-022-07044-3
Descripción
Sumario:Programmed death ligand-1 (PD-L1) is an immune checkpoint protein that has been linked with idiopathic pulmonary fibrosis (IPF) and fibroblast to myofibroblast transition (FMT). However, it remains largely unclear how PD-L1 mediates this process. We found significantly increased PD-L1 in the lungs of idiopathic pulmonary fibrosis patients and mice with pulmonary fibrosis induced by bleomycin and TGF-β. In primary human lung fibroblasts (HLFs), TGF-β induced PD-L1 expression that is dependent on both Smad3 and p38 pathways. PD-L1 knockdown using siRNA significantly attenuated TGF-β-induced expression of myofibroblast markers α-SMA, collagen-1, and fibronectin in normal and IPF HLFs. Further, we found that PD-L1 interacts with Smad3, and TGF-β induces their interaction. Interestingly, PD-L1 knockdown reduced α-SMA reporter activity induced by TGF-β in HLFs, suggesting that PD-L1 might act as a co-factor of Smad3 to promote target gene expression. TGF-β treatment also phosphorylates GSK3β and upregulates β-catenin protein levels. Inhibiting β-catenin signaling with the pharmaceutical inhibitor ICG001 significantly attenuated TGF-β-induced FMT. PD-L1 knockdown also attenuated TGF-β-induced GSK3β phosphorylation/inhibition and β-catenin upregulation, implicating GSK3β/β-catenin signaling in PD-L1-mediated FMT. Collectively, our findings demonstrate that fibroblast PD-L1 may promote pulmonary fibrosis through both Smad3 and β-catenin signaling and may represent a novel interventional target for IPF.