Cargando…
Compositional Data Analysis using Kernels in mass cytometry data
MOTIVATION: Cell-type abundance data arising from mass cytometry experiments are compositional in nature. Classical association tests do not apply to the compositional data due to their non-Euclidean nature. Existing methods for analysis of cell type abundance data suffer from several limitations fo...
Autores principales: | Rudra, Pratyaydipta, Baxter, Ryan, Hsieh, Elena W Y, Ghosh, Debashis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867823/ https://www.ncbi.nlm.nih.gov/pubmed/35224501 http://dx.doi.org/10.1093/bioadv/vbac003 |
Ejemplares similares
-
Minimizing Batch Effects in Mass Cytometry Data
por: Schuyler, Ronald P., et al.
Publicado: (2019) -
Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data
por: Zhan, Xiang, et al.
Publicado: (2015) -
Agile workflow for interactive analysis of mass cytometry data
por: Casado, Julia, et al.
Publicado: (2020) -
Challenges in the Multivariate Analysis of Mass Cytometry Data: The Effect of Randomization
por: Papoutsoglou, Georgios, et al.
Publicado: (2019) -
Different approaches to Imaging Mass Cytometry data analysis
por: Milosevic, Vladan
Publicado: (2023)