Cargando…
A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose
Meat adulteration is a global problem which undermines market fairness and harms people with allergies or certain religious beliefs. In this study, a novel framework in which a one-dimensional convolutional neural network (1DCNN) serves as a backbone and a random forest regressor (RFR) serves as a r...
Autores principales: | Huang, Changquan, Gu, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870927/ https://www.ncbi.nlm.nih.gov/pubmed/35206078 http://dx.doi.org/10.3390/foods11040602 |
Ejemplares similares
-
Qualitative and Quantitative Detection of Food Adulteration Using a Smart E-Nose
por: Pulluri, Kranthi Kumar, et al.
Publicado: (2022) -
A Machine Learning Method for the Detection of Brown Core in the Chinese Pear Variety Huangguan Using a MOS-Based E-Nose
por: Wei, Hao, et al.
Publicado: (2020) -
Bionic Electronic Nose Based on MOS Sensors Array and Machine Learning Algorithms Used for Wine Properties Detection
por: Liu, Huixiang, et al.
Publicado: (2018) -
A Machine Learning Method for the Fine-Grained Classification of Green Tea with Geographical Indication Using a MOS-Based Electronic Nose
por: Yu, Dongbing, et al.
Publicado: (2021) -
Detection of Meat Adulteration Using Spectroscopy-Based Sensors
por: Fengou, Lemonia-Christina, et al.
Publicado: (2021)