Cargando…
Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links
DNA-protein cross-links (DPCs) are extremely bulky adducts that interfere with replication. In human cells, they are processed by SPRTN, a protease activated by DNA polymerases stuck at DPCs. We have recently proposed the mechanism of the interaction of DNA polymerases with DPCs, involving a clash o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872012/ https://www.ncbi.nlm.nih.gov/pubmed/35205211 http://dx.doi.org/10.3390/genes13020166 |
_version_ | 1784657133063634944 |
---|---|
author | Yudkina, Anna V. Shilkin, Evgeniy S. Makarova, Alena V. Zharkov, Dmitry O. |
author_facet | Yudkina, Anna V. Shilkin, Evgeniy S. Makarova, Alena V. Zharkov, Dmitry O. |
author_sort | Yudkina, Anna V. |
collection | PubMed |
description | DNA-protein cross-links (DPCs) are extremely bulky adducts that interfere with replication. In human cells, they are processed by SPRTN, a protease activated by DNA polymerases stuck at DPCs. We have recently proposed the mechanism of the interaction of DNA polymerases with DPCs, involving a clash of protein surfaces followed by the distortion of the cross-linked protein. Here, we used a model DPC, located in the single-stranded template, the template strand of double-stranded DNA, or the displaced strand, to study the eukaryotic translesion DNA polymerases ζ (POLζ), ι (POLι) and η (POLη). POLι demonstrated poor synthesis on the DPC-containing substrates. POLζ and POLη paused at sites dictated by the footprints of the polymerase and the cross-linked protein. Beyond that, POLζ was able to elongate the primer to the cross-link site when a DPC was in the template. Surprisingly, POLη was not only able to reach the cross-link site but also incorporated 1–2 nucleotides past it, which makes POLη the most efficient DNA polymerase on DPC-containing substrates. However, a DPC in the displaced strand was an insurmountable obstacle for all polymerases, which stalled several nucleotides before the cross-link site. Overall, the behavior of translesion polymerases agrees with the model of protein clash and distortion described above. |
format | Online Article Text |
id | pubmed-8872012 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88720122022-02-25 Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links Yudkina, Anna V. Shilkin, Evgeniy S. Makarova, Alena V. Zharkov, Dmitry O. Genes (Basel) Article DNA-protein cross-links (DPCs) are extremely bulky adducts that interfere with replication. In human cells, they are processed by SPRTN, a protease activated by DNA polymerases stuck at DPCs. We have recently proposed the mechanism of the interaction of DNA polymerases with DPCs, involving a clash of protein surfaces followed by the distortion of the cross-linked protein. Here, we used a model DPC, located in the single-stranded template, the template strand of double-stranded DNA, or the displaced strand, to study the eukaryotic translesion DNA polymerases ζ (POLζ), ι (POLι) and η (POLη). POLι demonstrated poor synthesis on the DPC-containing substrates. POLζ and POLη paused at sites dictated by the footprints of the polymerase and the cross-linked protein. Beyond that, POLζ was able to elongate the primer to the cross-link site when a DPC was in the template. Surprisingly, POLη was not only able to reach the cross-link site but also incorporated 1–2 nucleotides past it, which makes POLη the most efficient DNA polymerase on DPC-containing substrates. However, a DPC in the displaced strand was an insurmountable obstacle for all polymerases, which stalled several nucleotides before the cross-link site. Overall, the behavior of translesion polymerases agrees with the model of protein clash and distortion described above. MDPI 2022-01-18 /pmc/articles/PMC8872012/ /pubmed/35205211 http://dx.doi.org/10.3390/genes13020166 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yudkina, Anna V. Shilkin, Evgeniy S. Makarova, Alena V. Zharkov, Dmitry O. Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links |
title | Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links |
title_full | Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links |
title_fullStr | Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links |
title_full_unstemmed | Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links |
title_short | Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links |
title_sort | stalling of eukaryotic translesion dna polymerases at dna-protein cross-links |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872012/ https://www.ncbi.nlm.nih.gov/pubmed/35205211 http://dx.doi.org/10.3390/genes13020166 |
work_keys_str_mv | AT yudkinaannav stallingofeukaryotictranslesiondnapolymerasesatdnaproteincrosslinks AT shilkinevgeniys stallingofeukaryotictranslesiondnapolymerasesatdnaproteincrosslinks AT makarovaalenav stallingofeukaryotictranslesiondnapolymerasesatdnaproteincrosslinks AT zharkovdmitryo stallingofeukaryotictranslesiondnapolymerasesatdnaproteincrosslinks |