Cargando…
Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies
Gene-based rare variant association studies (RVASs) have low power due to the infrequency of rare variants and the large multiple testing burden. To correct for multiple testing, traditional false discovery rate (FDR) procedures which depend solely on P-values are often used. Recently, Independent H...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872452/ https://www.ncbi.nlm.nih.gov/pubmed/35205424 http://dx.doi.org/10.3390/genes13020381 |
_version_ | 1784657242051575808 |
---|---|
author | Ji, Ying Chen, Rui Wang, Quan Wei, Qiang Tao, Ran Li, Bingshan |
author_facet | Ji, Ying Chen, Rui Wang, Quan Wei, Qiang Tao, Ran Li, Bingshan |
author_sort | Ji, Ying |
collection | PubMed |
description | Gene-based rare variant association studies (RVASs) have low power due to the infrequency of rare variants and the large multiple testing burden. To correct for multiple testing, traditional false discovery rate (FDR) procedures which depend solely on P-values are often used. Recently, Independent Hypothesis Weighting (IHW) was developed to improve the detection power while maintaining FDR control by leveraging prior information for each hypothesis. Here, we present a framework to increase power of gene-based RVASs by incorporating prior information using IHW. We first build supervised machine learning models to assign each gene a prediction score that measures its disease risk, using the input of multiple biological features, fed with high-confidence risk genes and local background genes selected near GWAS significant loci as the training set. Then we use the prediction scores as covariates to prioritize RVAS results via IHW. We demonstrate the effectiveness of this framework through applications to RVASs in schizophrenia and autism spectrum disorder. We found sizeable improvements in the number of significant associations compared to traditional FDR approaches, and independent evidence supporting the relevance of the genes identified by our framework but not traditional FDR, demonstrating the potential of our framework to improve power of gene-based RVASs. |
format | Online Article Text |
id | pubmed-8872452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88724522022-02-25 Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies Ji, Ying Chen, Rui Wang, Quan Wei, Qiang Tao, Ran Li, Bingshan Genes (Basel) Article Gene-based rare variant association studies (RVASs) have low power due to the infrequency of rare variants and the large multiple testing burden. To correct for multiple testing, traditional false discovery rate (FDR) procedures which depend solely on P-values are often used. Recently, Independent Hypothesis Weighting (IHW) was developed to improve the detection power while maintaining FDR control by leveraging prior information for each hypothesis. Here, we present a framework to increase power of gene-based RVASs by incorporating prior information using IHW. We first build supervised machine learning models to assign each gene a prediction score that measures its disease risk, using the input of multiple biological features, fed with high-confidence risk genes and local background genes selected near GWAS significant loci as the training set. Then we use the prediction scores as covariates to prioritize RVAS results via IHW. We demonstrate the effectiveness of this framework through applications to RVASs in schizophrenia and autism spectrum disorder. We found sizeable improvements in the number of significant associations compared to traditional FDR approaches, and independent evidence supporting the relevance of the genes identified by our framework but not traditional FDR, demonstrating the potential of our framework to improve power of gene-based RVASs. MDPI 2022-02-19 /pmc/articles/PMC8872452/ /pubmed/35205424 http://dx.doi.org/10.3390/genes13020381 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ji, Ying Chen, Rui Wang, Quan Wei, Qiang Tao, Ran Li, Bingshan Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies |
title | Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies |
title_full | Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies |
title_fullStr | Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies |
title_full_unstemmed | Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies |
title_short | Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies |
title_sort | leveraging gene-level prediction as informative covariate in hypothesis weighting improves power for rare variant association studies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872452/ https://www.ncbi.nlm.nih.gov/pubmed/35205424 http://dx.doi.org/10.3390/genes13020381 |
work_keys_str_mv | AT jiying leveraginggenelevelpredictionasinformativecovariateinhypothesisweightingimprovespowerforrarevariantassociationstudies AT chenrui leveraginggenelevelpredictionasinformativecovariateinhypothesisweightingimprovespowerforrarevariantassociationstudies AT wangquan leveraginggenelevelpredictionasinformativecovariateinhypothesisweightingimprovespowerforrarevariantassociationstudies AT weiqiang leveraginggenelevelpredictionasinformativecovariateinhypothesisweightingimprovespowerforrarevariantassociationstudies AT taoran leveraginggenelevelpredictionasinformativecovariateinhypothesisweightingimprovespowerforrarevariantassociationstudies AT libingshan leveraginggenelevelpredictionasinformativecovariateinhypothesisweightingimprovespowerforrarevariantassociationstudies |