Cargando…

Molecular dynamics simulations suggest possible activation and deactivation pathways in the hERG channel

The elusive activation/deactivation mechanism of hERG is investigated, a voltage-gated potassium channel involved in severe inherited and drug-induced cardiac channelopathies, including the Long QT Syndrome. Firstly, the available structural data are integrated by providing a homology model for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Costa, Flavio, Guardiani, Carlo, Giacomello, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873449/
https://www.ncbi.nlm.nih.gov/pubmed/35210539
http://dx.doi.org/10.1038/s42003-022-03074-9
Descripción
Sumario:The elusive activation/deactivation mechanism of hERG is investigated, a voltage-gated potassium channel involved in severe inherited and drug-induced cardiac channelopathies, including the Long QT Syndrome. Firstly, the available structural data are integrated by providing a homology model for the closed state of the channel. Secondly, molecular dynamics combined with a network analysis revealed two distinct pathways coupling the voltage sensor domain with the pore domain. Interestingly, some LQTS-related mutations known to impair the activation/deactivation mechanism are distributed along the identified pathways, which thus suggests a microscopic interpretation of their role. Split channels simulations clarify a surprising feature of this channel, which is still able to gate when a cut is introduced between the voltage sensor domain and the neighboring helix S5. In summary, the presented results suggest possible activation/deactivation mechanisms of non-domain-swapped potassium channels that may aid in biomedical applications.