Cargando…
Digital Twin for Training Bayesian Networks for Fault Diagnostics of Manufacturing Systems
Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian...
Autores principales: | Ademujimi, Toyosi, Prabhu, Vittaldas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874643/ https://www.ncbi.nlm.nih.gov/pubmed/35214332 http://dx.doi.org/10.3390/s22041430 |
Ejemplares similares
-
Fusion-Learning of Bayesian Network Models for Fault Diagnostics
por: Ademujimi, Toyosi, et al.
Publicado: (2021) -
Sensor Selection Framework for Designing Fault Diagnostics System
por: Kulkarni, Amol, et al.
Publicado: (2021) -
Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities
por: Bofill, Jherson, et al.
Publicado: (2023) -
Digital twin framework for reconfigurable manufacturing systems (RMSs): design and simulation
por: Kombaya Touckia, Jesus, et al.
Publicado: (2022) -
The Use of Digital Twins in Finite Element for the Study of Induction Motors Faults
por: Lopes, Tiago Drummond, et al.
Publicado: (2021)