Cargando…

Improving Performance of the PRYSTINE Traffic Sign Classification by Using a Perturbation-Based Explainability Approach

Model understanding is critical in many domains, particularly those involved in high-stakes decisions, e.g., medicine, criminal justice, and autonomous driving. Explainable AI (XAI) methods are essential for working with black-box models such as convolutional neural networks. This paper evaluates th...

Descripción completa

Detalles Bibliográficos
Autores principales: Sudars, Kaspars, Namatēvs, Ivars, Ozols, Kaspars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874740/
https://www.ncbi.nlm.nih.gov/pubmed/35200732
http://dx.doi.org/10.3390/jimaging8020030