Cargando…
Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform—Physicochemical Properties and In Vitro Studies on Mastocytoma Cells
A new combination of Toceranib (Toc; 5-[(5Z)-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-N-[2-(pyrrolidin-1-yl)ethyl]-1H-pyrrole-3-carboxamide) with nanohydroxyapatite (nHAp) was proposed as an antineoplastic drug delivery system. Its physicochemical properties were determine...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875076/ https://www.ncbi.nlm.nih.gov/pubmed/35216060 http://dx.doi.org/10.3390/ijms23041944 |
_version_ | 1784657830868942848 |
---|---|
author | Sobierajska, Paulina Serwotka-Suszczak, Anna Targonska, Sara Szymanski, Damian Marycz, Krzysztof Wiglusz, Rafal J. |
author_facet | Sobierajska, Paulina Serwotka-Suszczak, Anna Targonska, Sara Szymanski, Damian Marycz, Krzysztof Wiglusz, Rafal J. |
author_sort | Sobierajska, Paulina |
collection | PubMed |
description | A new combination of Toceranib (Toc; 5-[(5Z)-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-N-[2-(pyrrolidin-1-yl)ethyl]-1H-pyrrole-3-carboxamide) with nanohydroxyapatite (nHAp) was proposed as an antineoplastic drug delivery system. Its physicochemical properties were determined as crystallinity, grain size, morphology, zeta potential and hydrodynamic diameter as well as Toceranib release. The crystalline nanorods of nHAp were synthesised by the co-precipitation method, while the amorphous Toceranib was obtained by its conversion from the crystalline form during nHAp–Toc preparation. The surface interaction between both compounds was confirmed using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV–Vis) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The nHAp–Toc showed a slower and prolonged release of Toceranib. The release behaviour was affected by hydrodynamic size, surface interaction and the medium used (pH). The effectiveness of the proposed platform was tested by comparing the cytotoxicity of the drug combined with nHAp against the drug itself. The compounds were tested on NI-1 mastocytoma cells using the Alamar blue colorimetric technique. The obtained results suggest that the proposed platform shows high efficiency (the calculated IC50 is 4.29 nM), while maintaining the specificity of the drug alone. Performed analyses confirmed that nanohydroxyapatite is a prospective drug carrier and, when Toceranib-loaded, may be an idea worth developing with further research into therapeutic application in the treatment of canine mast cell tumour. |
format | Online Article Text |
id | pubmed-8875076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88750762022-02-26 Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform—Physicochemical Properties and In Vitro Studies on Mastocytoma Cells Sobierajska, Paulina Serwotka-Suszczak, Anna Targonska, Sara Szymanski, Damian Marycz, Krzysztof Wiglusz, Rafal J. Int J Mol Sci Article A new combination of Toceranib (Toc; 5-[(5Z)-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-N-[2-(pyrrolidin-1-yl)ethyl]-1H-pyrrole-3-carboxamide) with nanohydroxyapatite (nHAp) was proposed as an antineoplastic drug delivery system. Its physicochemical properties were determined as crystallinity, grain size, morphology, zeta potential and hydrodynamic diameter as well as Toceranib release. The crystalline nanorods of nHAp were synthesised by the co-precipitation method, while the amorphous Toceranib was obtained by its conversion from the crystalline form during nHAp–Toc preparation. The surface interaction between both compounds was confirmed using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV–Vis) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The nHAp–Toc showed a slower and prolonged release of Toceranib. The release behaviour was affected by hydrodynamic size, surface interaction and the medium used (pH). The effectiveness of the proposed platform was tested by comparing the cytotoxicity of the drug combined with nHAp against the drug itself. The compounds were tested on NI-1 mastocytoma cells using the Alamar blue colorimetric technique. The obtained results suggest that the proposed platform shows high efficiency (the calculated IC50 is 4.29 nM), while maintaining the specificity of the drug alone. Performed analyses confirmed that nanohydroxyapatite is a prospective drug carrier and, when Toceranib-loaded, may be an idea worth developing with further research into therapeutic application in the treatment of canine mast cell tumour. MDPI 2022-02-09 /pmc/articles/PMC8875076/ /pubmed/35216060 http://dx.doi.org/10.3390/ijms23041944 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sobierajska, Paulina Serwotka-Suszczak, Anna Targonska, Sara Szymanski, Damian Marycz, Krzysztof Wiglusz, Rafal J. Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform—Physicochemical Properties and In Vitro Studies on Mastocytoma Cells |
title | Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform—Physicochemical Properties and In Vitro Studies on Mastocytoma Cells |
title_full | Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform—Physicochemical Properties and In Vitro Studies on Mastocytoma Cells |
title_fullStr | Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform—Physicochemical Properties and In Vitro Studies on Mastocytoma Cells |
title_full_unstemmed | Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform—Physicochemical Properties and In Vitro Studies on Mastocytoma Cells |
title_short | Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform—Physicochemical Properties and In Vitro Studies on Mastocytoma Cells |
title_sort | synergistic effect of toceranib and nanohydroxyapatite as a drug delivery platform—physicochemical properties and in vitro studies on mastocytoma cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875076/ https://www.ncbi.nlm.nih.gov/pubmed/35216060 http://dx.doi.org/10.3390/ijms23041944 |
work_keys_str_mv | AT sobierajskapaulina synergisticeffectoftoceranibandnanohydroxyapatiteasadrugdeliveryplatformphysicochemicalpropertiesandinvitrostudiesonmastocytomacells AT serwotkasuszczakanna synergisticeffectoftoceranibandnanohydroxyapatiteasadrugdeliveryplatformphysicochemicalpropertiesandinvitrostudiesonmastocytomacells AT targonskasara synergisticeffectoftoceranibandnanohydroxyapatiteasadrugdeliveryplatformphysicochemicalpropertiesandinvitrostudiesonmastocytomacells AT szymanskidamian synergisticeffectoftoceranibandnanohydroxyapatiteasadrugdeliveryplatformphysicochemicalpropertiesandinvitrostudiesonmastocytomacells AT maryczkrzysztof synergisticeffectoftoceranibandnanohydroxyapatiteasadrugdeliveryplatformphysicochemicalpropertiesandinvitrostudiesonmastocytomacells AT wigluszrafalj synergisticeffectoftoceranibandnanohydroxyapatiteasadrugdeliveryplatformphysicochemicalpropertiesandinvitrostudiesonmastocytomacells |