Cargando…
Few-Shot Object Detection Using Multimodal Sensor Systems of Unmanned Surface Vehicles
The object detection algorithm is a key component for the autonomous operation of unmanned surface vehicles (USVs). However, owing to complex marine conditions, it is difficult to obtain large-scale, fully labeled surface object datasets. Shipborne sensors are often susceptible to external interfere...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875401/ https://www.ncbi.nlm.nih.gov/pubmed/35214413 http://dx.doi.org/10.3390/s22041511 |
Sumario: | The object detection algorithm is a key component for the autonomous operation of unmanned surface vehicles (USVs). However, owing to complex marine conditions, it is difficult to obtain large-scale, fully labeled surface object datasets. Shipborne sensors are often susceptible to external interference and have unsatisfying performance, compromising the results of traditional object detection tasks. In this paper, a few-shot surface object detection method is proposed based on multimodal sensor systems for USVs. The multi-modal sensors were used for three-dimensional object detection, and the ability of USVs to detect moving objects was enhanced, realizing metric learning-based few-shot object detection for USVs. Compared with conventional methods, the proposed method enhanced the classification results of few-shot tasks. The proposed approach achieves relatively better performance in three sampled sets of well-known datasets, i.e., 2%, 10%, 5% on average precision (AP) and 28%, 24%, 24% on average orientation similarity (AOS). Therefore, this study can be potentially used for various applications where the number of labeled data is not enough to acquire a compromising result. |
---|