Cargando…
Natural Variation and the Role of Zn(2)Cys(6) Transcription Factors SdrA, WarA and WarB in Sorbic Acid Resistance of Aspergillus niger
Weak acids, such as sorbic acid, are used as chemical food preservatives by the industry. Fungi overcome this weak-acid stress by inducing cellular responses mediated by transcription factors. In our research, a large-scale sorbic acid resistance screening was performed on 100 A. niger sensu stricto...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877037/ https://www.ncbi.nlm.nih.gov/pubmed/35208676 http://dx.doi.org/10.3390/microorganisms10020221 |
Sumario: | Weak acids, such as sorbic acid, are used as chemical food preservatives by the industry. Fungi overcome this weak-acid stress by inducing cellular responses mediated by transcription factors. In our research, a large-scale sorbic acid resistance screening was performed on 100 A. niger sensu stricto strains isolated from various sources to study strain variability in sorbic acid resistance. The minimal inhibitory concentration of undissociated (MIC(u)) sorbic acid at pH = 4 in the MEB of the A. niger strains varies between 4.0 mM and 7.0 mM, with the average out of 100 strains being 4.8 ± 0.8 mM, when scored after 28 days. MIC(u) values were roughly 1 mM lower when tested in commercial ice tea. Genome sequencing of the most sorbic-acid-sensitive strain among the isolates revealed a premature stop codon inside the sorbic acid response regulator encoding gene sdrA. Repairing this missense mutation increased the sorbic acid resistance, showing that the sorbic-acid-sensitive phenotype of this strain is caused by the loss of SdrA function. To identify additional transcription factors involved in weak-acid resistance, a transcription factor knock-out library consisting of 240 A. niger deletion strains was screened. The screen identified a novel transcription factor, WarB, which contributes to the resistance against a broad range of weak acids, including sorbic acid. The roles of SdrA, WarA and WarB in weak-acid resistance, including sorbic acid, were compared by creating single, double and the triple knock-out strains. All three transcription factors were found to have an additive effect on the sorbic acid stress response. |
---|