Cargando…

The Stability and Electronic Structure of Cu(200)/AuCu(200) Interface: An Insight from First-Principle Calculation

AuCu phase had a significant effect on the bonding strength of Au80Sn20 alloy and Cu substrate. The formation of the AuCu(200)/Cu(200) interface significantly improves the shear strength of solder joints. Therefore, it is particularly important to analyze the strengthening mechanism of the AuCu phas...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zihao, Feng, Junli, Wu, Zhangxi, Pang, Mingjun, Liu, Dong, Yang, Wenchao, Zhan, Yongzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878266/
https://www.ncbi.nlm.nih.gov/pubmed/35208041
http://dx.doi.org/10.3390/ma15041506
Descripción
Sumario:AuCu phase had a significant effect on the bonding strength of Au80Sn20 alloy and Cu substrate. The formation of the AuCu(200)/Cu(200) interface significantly improves the shear strength of solder joints. Therefore, it is particularly important to analyze the strengthening mechanism of the AuCu phase in the Cu matrix. The atomic structure, interfacial stability, and interfacial bonding properties of the Cu(200)/AuCu(200) interface were investigated using first-principle calculation. The layer spacing convergence results show that seven layers of Cu(200) surface and seven layers of AuCu(200) surface are enough thick to be chosen for the interface model. The calculation shows that the surface energies are 1.463 J/m(2) and 1.081 J/m(2) for AuCu(200) surface and Cu(200) surface, respectively. Four interface combinations of Top sit, Long bridge, Short bridge, and Hollow were investigated by considering four stacking methods of AuCu(200). It is shown that the interfacial configuration of the Long bridge is the most stable and favorable structure, which has the largest adhesion work, the smallest interfacial energy, and the smallest interfacial spacing. The density of states and electron difference density were calculated for the four interfacial configurations, and the results showed that the main bonding mode of the Long bridge interface is composed of both Cu-Cu covalent bonds and Au-Cu covalent bonds.