Cargando…
Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Cell Clusters from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Diabetes Treatment
Although pancreatic islet transplantation is a potentially curative treatment for insulin-dependent diabetes, a shortage of donor sources, low differentiation capacity, and transplantation efficacy are major hurdles to overcome before becoming a standard therapy. Stem cell-derived insulin-producing...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879814/ https://www.ncbi.nlm.nih.gov/pubmed/35214135 http://dx.doi.org/10.3390/pharmaceutics14020400 |
_version_ | 1784659000833343488 |
---|---|
author | Shim, In Kyong Lee, Seong Jin Lee, Yu Na Kim, Dohui Goh, Hanse Youn, Jaeseung Jang, Jinah Kim, Dong Sung Kim, Song Cheol |
author_facet | Shim, In Kyong Lee, Seong Jin Lee, Yu Na Kim, Dohui Goh, Hanse Youn, Jaeseung Jang, Jinah Kim, Dong Sung Kim, Song Cheol |
author_sort | Shim, In Kyong |
collection | PubMed |
description | Although pancreatic islet transplantation is a potentially curative treatment for insulin-dependent diabetes, a shortage of donor sources, low differentiation capacity, and transplantation efficacy are major hurdles to overcome before becoming a standard therapy. Stem cell-derived insulin-producing cells (IPCs) are a potential approach to overcoming these limitations. To improve the differentiation capacity of the IPCs, cell cluster formation is crucial to mimic the 3D structure of the islet. This study developed a biodegradable polycaprolactone (PCL) electrospun nanofibrous (NF) microwell-arrayed membrane permeable to soluble factors. Based on the numerical analysis and experimental diffusion test, the NF microwell could provide sufficient nutrients, unlike an impermeable PDMS (polydimethylsiloxane) microwell. The IPC clusters in the NF microwells showed higher gene expression of insulin and PDX1 and insulin secretion than the PDMS microwells. The IPC clusters in the NF microwell-arrayed membrane could be directly transplanted. Transplanted IPC clusters in the microwells survived well and expressed PDX1 and insulin. Additionally, human c-peptide was identified in the blood plasma at two months after transplantation of the membranes. The NF microwell-arrayed membrane can be a new platform promoting IPC differentiation capacity and realizing an in situ transplantation technique for diabetic patients. |
format | Online Article Text |
id | pubmed-8879814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88798142022-02-26 Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Cell Clusters from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Diabetes Treatment Shim, In Kyong Lee, Seong Jin Lee, Yu Na Kim, Dohui Goh, Hanse Youn, Jaeseung Jang, Jinah Kim, Dong Sung Kim, Song Cheol Pharmaceutics Article Although pancreatic islet transplantation is a potentially curative treatment for insulin-dependent diabetes, a shortage of donor sources, low differentiation capacity, and transplantation efficacy are major hurdles to overcome before becoming a standard therapy. Stem cell-derived insulin-producing cells (IPCs) are a potential approach to overcoming these limitations. To improve the differentiation capacity of the IPCs, cell cluster formation is crucial to mimic the 3D structure of the islet. This study developed a biodegradable polycaprolactone (PCL) electrospun nanofibrous (NF) microwell-arrayed membrane permeable to soluble factors. Based on the numerical analysis and experimental diffusion test, the NF microwell could provide sufficient nutrients, unlike an impermeable PDMS (polydimethylsiloxane) microwell. The IPC clusters in the NF microwells showed higher gene expression of insulin and PDX1 and insulin secretion than the PDMS microwells. The IPC clusters in the NF microwell-arrayed membrane could be directly transplanted. Transplanted IPC clusters in the microwells survived well and expressed PDX1 and insulin. Additionally, human c-peptide was identified in the blood plasma at two months after transplantation of the membranes. The NF microwell-arrayed membrane can be a new platform promoting IPC differentiation capacity and realizing an in situ transplantation technique for diabetic patients. MDPI 2022-02-12 /pmc/articles/PMC8879814/ /pubmed/35214135 http://dx.doi.org/10.3390/pharmaceutics14020400 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shim, In Kyong Lee, Seong Jin Lee, Yu Na Kim, Dohui Goh, Hanse Youn, Jaeseung Jang, Jinah Kim, Dong Sung Kim, Song Cheol Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Cell Clusters from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Diabetes Treatment |
title | Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Cell Clusters from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Diabetes Treatment |
title_full | Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Cell Clusters from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Diabetes Treatment |
title_fullStr | Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Cell Clusters from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Diabetes Treatment |
title_full_unstemmed | Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Cell Clusters from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Diabetes Treatment |
title_short | Enhanced Differentiation Capacity and Transplantation Efficacy of Insulin-Producing Cell Clusters from Human iPSCs Using Permeable Nanofibrous Microwell-Arrayed Membrane for Diabetes Treatment |
title_sort | enhanced differentiation capacity and transplantation efficacy of insulin-producing cell clusters from human ipscs using permeable nanofibrous microwell-arrayed membrane for diabetes treatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879814/ https://www.ncbi.nlm.nih.gov/pubmed/35214135 http://dx.doi.org/10.3390/pharmaceutics14020400 |
work_keys_str_mv | AT shiminkyong enhanceddifferentiationcapacityandtransplantationefficacyofinsulinproducingcellclustersfromhumanipscsusingpermeablenanofibrousmicrowellarrayedmembranefordiabetestreatment AT leeseongjin enhanceddifferentiationcapacityandtransplantationefficacyofinsulinproducingcellclustersfromhumanipscsusingpermeablenanofibrousmicrowellarrayedmembranefordiabetestreatment AT leeyuna enhanceddifferentiationcapacityandtransplantationefficacyofinsulinproducingcellclustersfromhumanipscsusingpermeablenanofibrousmicrowellarrayedmembranefordiabetestreatment AT kimdohui enhanceddifferentiationcapacityandtransplantationefficacyofinsulinproducingcellclustersfromhumanipscsusingpermeablenanofibrousmicrowellarrayedmembranefordiabetestreatment AT gohhanse enhanceddifferentiationcapacityandtransplantationefficacyofinsulinproducingcellclustersfromhumanipscsusingpermeablenanofibrousmicrowellarrayedmembranefordiabetestreatment AT younjaeseung enhanceddifferentiationcapacityandtransplantationefficacyofinsulinproducingcellclustersfromhumanipscsusingpermeablenanofibrousmicrowellarrayedmembranefordiabetestreatment AT jangjinah enhanceddifferentiationcapacityandtransplantationefficacyofinsulinproducingcellclustersfromhumanipscsusingpermeablenanofibrousmicrowellarrayedmembranefordiabetestreatment AT kimdongsung enhanceddifferentiationcapacityandtransplantationefficacyofinsulinproducingcellclustersfromhumanipscsusingpermeablenanofibrousmicrowellarrayedmembranefordiabetestreatment AT kimsongcheol enhanceddifferentiationcapacityandtransplantationefficacyofinsulinproducingcellclustersfromhumanipscsusingpermeablenanofibrousmicrowellarrayedmembranefordiabetestreatment |