Cargando…
Functional EL-HN Fragment as a Potent Candidate Vaccine for the Prevention of Botulinum Neurotoxin Serotype E
Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the most toxic known protein and the causative agent of human botulism. BoNTs have similar structures and functions, comprising three functional domains: catalytic domain (L), translocation domain (HN), and receptor-binding domain...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880310/ https://www.ncbi.nlm.nih.gov/pubmed/35202162 http://dx.doi.org/10.3390/toxins14020135 |
Sumario: | Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the most toxic known protein and the causative agent of human botulism. BoNTs have similar structures and functions, comprising three functional domains: catalytic domain (L), translocation domain (HN), and receptor-binding domain (Hc). In the present study, BoNT/E was selected as a model toxin to further explore the immunological significance of each domain. The EL-HN fragment (L and HN domains of BoNT/E) retained the enzymatic activity without in vivo neurotoxicity. Extensive investigations showed EL-HN functional fragment had the highest protective efficacy and contained some functional neutralizing epitopes. Further experiments demonstrated the EL-HN provided a superior protective effect compared with the EHc or EHc and EL-HN combination. Thus, the EL-HN played an important role in immune protection against BoNT/E and could provide an excellent platform for the design of botulinum vaccines and neutralizing antibodies. The EL-HN has the potential to replace EHc or toxoid as the optimal immunogen for the botulinum vaccine. |
---|