Cargando…
Deposition of Very-Low-Hydrogen-Containing Silicon at a Low Temperature Using Very-High-Frequency (162 MHz) SiH(4) Plasma
Low-hydrogen-containing amorphous silicon (a-Si) was deposited at a low temperature of 80 °C using a very high frequency (VHF at 162 MHz) plasma system with multi-split electrodes. Using the 162 MHz VHF plasma system, a high deposition rate of a-Si with a relatively high deposition uniformity of 6.7...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880738/ https://www.ncbi.nlm.nih.gov/pubmed/35208298 http://dx.doi.org/10.3390/mi13020173 |
Sumario: | Low-hydrogen-containing amorphous silicon (a-Si) was deposited at a low temperature of 80 °C using a very high frequency (VHF at 162 MHz) plasma system with multi-split electrodes. Using the 162 MHz VHF plasma system, a high deposition rate of a-Si with a relatively high deposition uniformity of 6.7% could be obtained due to the formation of high-ion-density (>10(11) cm(−3)) plasma with SiH(4) and a lack of standing waves by using small multi-split electrodes. The increase in the radio frequency (RF) power decreased the hydrogen content in the deposited silicon film and, at a high RF power of 2000 W, a-Si with a low hydrogen content of 3.78% could be deposited without the need for a dehydrogenation process. The crystallization of the a-Si by ultraviolet (UV) irradiation showed that the a-Si can be crystallized with a crystallinity of 0.8 and a UV energy of 80 J without dehydrogenation. High-resolution transmission electron microscopy showed that the a-Si deposited by the VHF plasma was a very small nanocrystalline-like a-Si and the crystalline size significantly grew with the UV irradiation. We believe that the VHF (162 MHz) multi-split plasma system can be used for a low-cost low-temperature polysilicon (LTPS) process. |
---|