Cargando…

Cell-type heterogeneity: Why we should adjust for it in epigenome and biomarker studies

Most studies aiming to identify epigenetic biomarkers do so from complex tissues that are composed of many different cell-types. By definition, these cell-types vary substantially in terms of their epigenetic profiles. This cell-type specific variation among healthy cells is completely independent o...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Luo, Teschendorff, Andrew E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887190/
https://www.ncbi.nlm.nih.gov/pubmed/35227298
http://dx.doi.org/10.1186/s13148-022-01253-3
Descripción
Sumario:Most studies aiming to identify epigenetic biomarkers do so from complex tissues that are composed of many different cell-types. By definition, these cell-types vary substantially in terms of their epigenetic profiles. This cell-type specific variation among healthy cells is completely independent of the variation associated with disease, yet it dominates the epigenetic variability landscape. While cell-type composition of tissues can change in disease and this may provide accurate and reproducible biomarkers, not adjusting for the underlying cell-type heterogeneity may seriously limit the sensitivity and precision to detect disease-relevant biomarkers or hamper our understanding of such biomarkers. Given that computational and experimental tools for tackling cell-type heterogeneity are available, we here stress that future epigenetic biomarker studies should aim to provide estimates of underlying cell-type fractions for all samples in the study, and to identify biomarkers before and after adjustment for cell-type heterogeneity, in order to obtain a more complete and unbiased picture of the biomarker-landscape. This is critical, not only to improve reproducibility and for the eventual clinical application of such biomarkers, but importantly, to also improve our molecular understanding of disease itself.