Cargando…
Sphingosine 1-Phosphate-Upregulated COX-2/PGE(2) System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade
Human cardiac fibroblasts (HCFs) play key roles in normal physiological functions and pathological processes in the heart. Our recent study has found that, in HCFs, sphingosine 1-phosphate (S1P) can upregulate the expression of cyclooxygenase-2 (COX-2) leading to prostaglandin E(2) (PGE(2)) generati...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888119/ https://www.ncbi.nlm.nih.gov/pubmed/35242277 http://dx.doi.org/10.1155/2022/7664290 |
_version_ | 1784661063370801152 |
---|---|
author | Yang, Chien-Chung Hsiao, Li-Der Shih, Ya-Fang Su, Mei-Hsiu Yang, Chuen-Mao |
author_facet | Yang, Chien-Chung Hsiao, Li-Der Shih, Ya-Fang Su, Mei-Hsiu Yang, Chuen-Mao |
author_sort | Yang, Chien-Chung |
collection | PubMed |
description | Human cardiac fibroblasts (HCFs) play key roles in normal physiological functions and pathological processes in the heart. Our recent study has found that, in HCFs, sphingosine 1-phosphate (S1P) can upregulate the expression of cyclooxygenase-2 (COX-2) leading to prostaglandin E(2) (PGE(2)) generation mediated by S1P receptors/PKCα/MAPKs cascade-dependent activation of NF-κB. Alternatively, G protein-coupled receptor- (GPCR-) mediated transactivation of receptor tyrosine kinases (RTKs) has been proved to induce inflammatory responses. However, whether GPCR-mediated transactivation of RTKs participated in the COX-2/PGE(2) system induced by S1P is still unclear in HCFs. We hypothesize that GPCR-mediated transactivation of RTKs-dependent signaling cascade is involved in S1P-induced responses. This study is aimed at exploring the comprehensive mechanisms of S1P-promoted COX-2/PGE(2) expression and apoptotic effects on HCFs. Here, we used pharmacological inhibitors and transfection with siRNA to evaluate whether matrix metalloprotease (MMP)2/9, heparin-binding- (HB-) epidermal growth factor (EGF), EGF receptor (EGFR), PI3K/Akt, MAPKs, and transcription factor AP-1 participated in the S1P-induced COX-2/PGE(2) system determined by Western blotting, real-time polymerase chain reaction (RT-PCR), chromatin immunoprecipitation (ChIP), and promoter-reporter assays in HCFs. Our results showed that S1PR1/3 activated by S1P coupled to G(q)- and G(i)-mediated MMP9 activity to stimulate EGFR/PI3K/Akt/MAPKs/AP-1-dependent activity of transcription to upregulate COX-2 accompanied with PGE(2) production, leading to stimulation of caspase-3 activity and apoptosis. Moreover, S1P-enhanced c-Jun bound to COX-2 promoters on its corresponding binding sites, which was attenuated by these inhibitors of protein kinases, determined by a ChIP assay. These results concluded that transactivation of MMP9/EGFR-mediated PI3K/Akt/MAPKs-dependent AP-1 activity was involved in the upregulation of the COX-2/PGE(2) system induced by S1P, in turn leading to apoptosis in HCFs. |
format | Online Article Text |
id | pubmed-8888119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-88881192022-03-02 Sphingosine 1-Phosphate-Upregulated COX-2/PGE(2) System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade Yang, Chien-Chung Hsiao, Li-Der Shih, Ya-Fang Su, Mei-Hsiu Yang, Chuen-Mao Oxid Med Cell Longev Research Article Human cardiac fibroblasts (HCFs) play key roles in normal physiological functions and pathological processes in the heart. Our recent study has found that, in HCFs, sphingosine 1-phosphate (S1P) can upregulate the expression of cyclooxygenase-2 (COX-2) leading to prostaglandin E(2) (PGE(2)) generation mediated by S1P receptors/PKCα/MAPKs cascade-dependent activation of NF-κB. Alternatively, G protein-coupled receptor- (GPCR-) mediated transactivation of receptor tyrosine kinases (RTKs) has been proved to induce inflammatory responses. However, whether GPCR-mediated transactivation of RTKs participated in the COX-2/PGE(2) system induced by S1P is still unclear in HCFs. We hypothesize that GPCR-mediated transactivation of RTKs-dependent signaling cascade is involved in S1P-induced responses. This study is aimed at exploring the comprehensive mechanisms of S1P-promoted COX-2/PGE(2) expression and apoptotic effects on HCFs. Here, we used pharmacological inhibitors and transfection with siRNA to evaluate whether matrix metalloprotease (MMP)2/9, heparin-binding- (HB-) epidermal growth factor (EGF), EGF receptor (EGFR), PI3K/Akt, MAPKs, and transcription factor AP-1 participated in the S1P-induced COX-2/PGE(2) system determined by Western blotting, real-time polymerase chain reaction (RT-PCR), chromatin immunoprecipitation (ChIP), and promoter-reporter assays in HCFs. Our results showed that S1PR1/3 activated by S1P coupled to G(q)- and G(i)-mediated MMP9 activity to stimulate EGFR/PI3K/Akt/MAPKs/AP-1-dependent activity of transcription to upregulate COX-2 accompanied with PGE(2) production, leading to stimulation of caspase-3 activity and apoptosis. Moreover, S1P-enhanced c-Jun bound to COX-2 promoters on its corresponding binding sites, which was attenuated by these inhibitors of protein kinases, determined by a ChIP assay. These results concluded that transactivation of MMP9/EGFR-mediated PI3K/Akt/MAPKs-dependent AP-1 activity was involved in the upregulation of the COX-2/PGE(2) system induced by S1P, in turn leading to apoptosis in HCFs. Hindawi 2022-02-22 /pmc/articles/PMC8888119/ /pubmed/35242277 http://dx.doi.org/10.1155/2022/7664290 Text en Copyright © 2022 Chien-Chung Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Chien-Chung Hsiao, Li-Der Shih, Ya-Fang Su, Mei-Hsiu Yang, Chuen-Mao Sphingosine 1-Phosphate-Upregulated COX-2/PGE(2) System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade |
title | Sphingosine 1-Phosphate-Upregulated COX-2/PGE(2) System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade |
title_full | Sphingosine 1-Phosphate-Upregulated COX-2/PGE(2) System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade |
title_fullStr | Sphingosine 1-Phosphate-Upregulated COX-2/PGE(2) System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade |
title_full_unstemmed | Sphingosine 1-Phosphate-Upregulated COX-2/PGE(2) System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade |
title_short | Sphingosine 1-Phosphate-Upregulated COX-2/PGE(2) System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade |
title_sort | sphingosine 1-phosphate-upregulated cox-2/pge(2) system contributes to human cardiac fibroblast apoptosis: involvement of mmp-9-dependent transactivation of egfr cascade |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888119/ https://www.ncbi.nlm.nih.gov/pubmed/35242277 http://dx.doi.org/10.1155/2022/7664290 |
work_keys_str_mv | AT yangchienchung sphingosine1phosphateupregulatedcox2pge2systemcontributestohumancardiacfibroblastapoptosisinvolvementofmmp9dependenttransactivationofegfrcascade AT hsiaolider sphingosine1phosphateupregulatedcox2pge2systemcontributestohumancardiacfibroblastapoptosisinvolvementofmmp9dependenttransactivationofegfrcascade AT shihyafang sphingosine1phosphateupregulatedcox2pge2systemcontributestohumancardiacfibroblastapoptosisinvolvementofmmp9dependenttransactivationofegfrcascade AT sumeihsiu sphingosine1phosphateupregulatedcox2pge2systemcontributestohumancardiacfibroblastapoptosisinvolvementofmmp9dependenttransactivationofegfrcascade AT yangchuenmao sphingosine1phosphateupregulatedcox2pge2systemcontributestohumancardiacfibroblastapoptosisinvolvementofmmp9dependenttransactivationofegfrcascade |