Cargando…
UPLC-Q-TOF-MS based metabolomics and chemometric analyses for green tea fermented with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V
UPLC-Q-TOF-MS was employed to analyse the non-volatile components of green teas fermented with probiotic yeast (Saccharomyces boulardii) and lactic acid bacteria (LAB, Lactiplantibacillus plantarum). The flavone glycosides in yeast-fermented and stored tea decreased significantly, together with the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892000/ https://www.ncbi.nlm.nih.gov/pubmed/35252880 http://dx.doi.org/10.1016/j.crfs.2022.02.012 |
Sumario: | UPLC-Q-TOF-MS was employed to analyse the non-volatile components of green teas fermented with probiotic yeast (Saccharomyces boulardii) and lactic acid bacteria (LAB, Lactiplantibacillus plantarum). The flavone glycosides in yeast-fermented and stored tea decreased significantly, together with the increases of flavone aglycones and other simple flavone glycosides. LAB-fermented tea presented different flavone glycoside profiles; in which, both C-glycosides and O-glycosides decreased and the flavone aglycones were further degraded. The profiles of flavone glycosides and aglycones in co-cultured tea differed from that in yeast- or LAB-fermented tea; less glycosides were degraded but a greater number of aglycones were produced. Two unique LAB metabolites with bioactive and antifungal properties, D-phenyllactic acid (PLA) and p-OH-PLA, were found in both L. plantarum and co-cultured teas, and the co-fermentation showed a synergic effect on the production of these two compounds that would enhance the quality and preservation of fermented teas. |
---|