Cargando…

A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display

[Image: see text] Macrocyclic peptides (MPs) have positioned themselves as a privileged class of compounds for the discovery of therapeutics and development of chemical probes. Aided by the development of powerful selection strategies, high-affinity binders against biomolecular targets can readily b...

Descripción completa

Detalles Bibliográficos
Autores principales: Oppewal, Titia Rixt, Jansen, Ivar D., Hekelaar, Johan, Mayer, Clemens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895403/
https://www.ncbi.nlm.nih.gov/pubmed/35171585
http://dx.doi.org/10.1021/jacs.1c12822
_version_ 1784662918469517312
author Oppewal, Titia Rixt
Jansen, Ivar D.
Hekelaar, Johan
Mayer, Clemens
author_facet Oppewal, Titia Rixt
Jansen, Ivar D.
Hekelaar, Johan
Mayer, Clemens
author_sort Oppewal, Titia Rixt
collection PubMed
description [Image: see text] Macrocyclic peptides (MPs) have positioned themselves as a privileged class of compounds for the discovery of therapeutics and development of chemical probes. Aided by the development of powerful selection strategies, high-affinity binders against biomolecular targets can readily be elicited from massive, genetically encoded libraries by affinity selection. For example, in phage display, MPs are accessed on the surface of whole bacteriophages via disulfide formation, the use of (symmetric) crosslinkers, or the incorporation of non-canonical amino acids. To facilitate a straightforward cyclization of linear precursors with asymmetric molecular scaffolds, which are often found at the core of naturally occurring MPs, we report an efficient two-step strategy to access MPs via the programmed modification of a unique cysteine residue and an N-terminal amine. We demonstrate that this approach yields MPs featuring asymmetric cyclization units from both synthetic peptides and when linear precursors are appended onto a phage-coat protein. Finally, we showcase that our cyclization strategy is compatible with traditional phage-display protocols and enables the selection of MP binders against a model target protein from naïve libraries. By enabling the incorporation of non-peptidic moieties that (1) can serve as cyclization units, (2) provide interactions for binding, and/or (3) tailor pharmacological properties, our head-to-side-chain cyclization strategy provides access to a currently under-explored chemical space for the development of chemical probes and therapeutics.
format Online
Article
Text
id pubmed-8895403
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-88954032022-03-07 A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display Oppewal, Titia Rixt Jansen, Ivar D. Hekelaar, Johan Mayer, Clemens J Am Chem Soc [Image: see text] Macrocyclic peptides (MPs) have positioned themselves as a privileged class of compounds for the discovery of therapeutics and development of chemical probes. Aided by the development of powerful selection strategies, high-affinity binders against biomolecular targets can readily be elicited from massive, genetically encoded libraries by affinity selection. For example, in phage display, MPs are accessed on the surface of whole bacteriophages via disulfide formation, the use of (symmetric) crosslinkers, or the incorporation of non-canonical amino acids. To facilitate a straightforward cyclization of linear precursors with asymmetric molecular scaffolds, which are often found at the core of naturally occurring MPs, we report an efficient two-step strategy to access MPs via the programmed modification of a unique cysteine residue and an N-terminal amine. We demonstrate that this approach yields MPs featuring asymmetric cyclization units from both synthetic peptides and when linear precursors are appended onto a phage-coat protein. Finally, we showcase that our cyclization strategy is compatible with traditional phage-display protocols and enables the selection of MP binders against a model target protein from naïve libraries. By enabling the incorporation of non-peptidic moieties that (1) can serve as cyclization units, (2) provide interactions for binding, and/or (3) tailor pharmacological properties, our head-to-side-chain cyclization strategy provides access to a currently under-explored chemical space for the development of chemical probes and therapeutics. American Chemical Society 2022-02-16 2022-03-02 /pmc/articles/PMC8895403/ /pubmed/35171585 http://dx.doi.org/10.1021/jacs.1c12822 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Oppewal, Titia Rixt
Jansen, Ivar D.
Hekelaar, Johan
Mayer, Clemens
A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display
title A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display
title_full A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display
title_fullStr A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display
title_full_unstemmed A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display
title_short A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display
title_sort strategy to select macrocyclic peptides featuring asymmetric molecular scaffolds as cyclization units by phage display
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895403/
https://www.ncbi.nlm.nih.gov/pubmed/35171585
http://dx.doi.org/10.1021/jacs.1c12822
work_keys_str_mv AT oppewaltitiarixt astrategytoselectmacrocyclicpeptidesfeaturingasymmetricmolecularscaffoldsascyclizationunitsbyphagedisplay
AT jansenivard astrategytoselectmacrocyclicpeptidesfeaturingasymmetricmolecularscaffoldsascyclizationunitsbyphagedisplay
AT hekelaarjohan astrategytoselectmacrocyclicpeptidesfeaturingasymmetricmolecularscaffoldsascyclizationunitsbyphagedisplay
AT mayerclemens astrategytoselectmacrocyclicpeptidesfeaturingasymmetricmolecularscaffoldsascyclizationunitsbyphagedisplay
AT oppewaltitiarixt strategytoselectmacrocyclicpeptidesfeaturingasymmetricmolecularscaffoldsascyclizationunitsbyphagedisplay
AT jansenivard strategytoselectmacrocyclicpeptidesfeaturingasymmetricmolecularscaffoldsascyclizationunitsbyphagedisplay
AT hekelaarjohan strategytoselectmacrocyclicpeptidesfeaturingasymmetricmolecularscaffoldsascyclizationunitsbyphagedisplay
AT mayerclemens strategytoselectmacrocyclicpeptidesfeaturingasymmetricmolecularscaffoldsascyclizationunitsbyphagedisplay