Cargando…

Lazertinib improves the efficacy of chemotherapeutic drugs in ABCB1 or ABCG2 overexpression cancer cells in vitro, in vivo, and ex vivo

Multidrug resistance (MDR) is the major cause of chemotherapy failure, which is usually caused by the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2. To date, no MDR modulator has been clinically approved. Here, we found that lazertinib (YH25448; a novel third-gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Yingfang, Tao, Tian, Guo, Zhixing, Wah To, Kenneth Kin, Chen, Da, Wu, Shaocong, Yang, Chuan, Li, Jinsui, Luo, Min, Wang, Fang, Fu, Liwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897717/
https://www.ncbi.nlm.nih.gov/pubmed/35284628
http://dx.doi.org/10.1016/j.omto.2022.02.006
Descripción
Sumario:Multidrug resistance (MDR) is the major cause of chemotherapy failure, which is usually caused by the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2. To date, no MDR modulator has been clinically approved. Here, we found that lazertinib (YH25448; a novel third-generation tyrosine kinase inhibitor [TKI]) could enhance the anticancer efficacy of MDR transporter substrate anticancer drugs in vitro,in vivo, and ex vivo. Mechanistically, lazertinib was shown to inhibit the drug efflux activities of ABCB1 and ABCG2 and thus increase the intracellular accumulation of the transporter substrate anticancer drug. Moreover, lazertinib was found to stimulate the ATPase activity of ABCB1/ABCG2 and inhibit the photolabeling of the transporters by (125)I-iodoarylazidoprazosin (IAAP). However, lazertinib neither changed the expression or locolization of ABCB1 and ABCG2 nor blocked the signal pathway of Akt or Erk1/2 at a drug concentration effective for MDR reversal. Overall, our results demonstrate that lazertinib effectively reverses ABCB1- or ABCG2-mediated MDR by competitively binding to the ATP-binding site and inhibiting drug efflux function. This is the first report demonstrating the novel combined use of lazertinib and conventional chemotherapeutical drugs to overcome MDR in ABCB1/ABCG2-overexpressing cancer cells.