Cargando…
Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review
Artificial intelligence (AI) and computer vision (CV) methods become reliable to extract features from radiological images, aiding COVID-19 diagnosis ahead of the pathogenic tests and saving critical time for disease management and control. Thus, this review article focuses on cascading numerous dee...
Autores principales: | Hassan, Haseeb, Ren, Zhaoyu, Zhou, Chengmin, Khan, Muazzam A., Pan, Yi, Zhao, Jian, Huang, Bingding |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897838/ https://www.ncbi.nlm.nih.gov/pubmed/35286874 http://dx.doi.org/10.1016/j.cmpb.2022.106731 |
Ejemplares similares
-
Weakly-supervised deep learning for ultrasound diagnosis of breast cancer
por: Kim, Jaeil, et al.
Publicado: (2021) -
Phenotypic Analysis of Diseased Plant Leaves Using Supervised and Weakly Supervised Deep Learning
por: Zhou, Lei, et al.
Publicado: (2023) -
Weakly-supervised deep learning models in computational pathology
por: Augustine, Tanya N.
Publicado: (2022) -
Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery
por: Adke, Shrinidhi, et al.
Publicado: (2022) -
Erratum to “Phenotypic Analysis of Diseased Plant Leaves Using Supervised and Weakly Supervised Deep Learning”
por: Zhou, Lei, et al.
Publicado: (2023)