Cargando…

A recurring packing contact in crystals of InlB pinpoints functional binding sites in the internalin domain and the B repeat

InlB, a bacterial agonist of the human receptor tyrosine kinase MET, consists of an N-terminal internalin domain, a central B repeat and three C-terminal GW domains. In all previous structures of full-length InlB or an InlB construct lacking the GW domains (InlB(392)), there was no interpretable ele...

Descripción completa

Detalles Bibliográficos
Autores principales: Geerds, Christina, Bleymüller, Willem M., Meyer, Timo, Widmann, Christiane, Niemann, Hartmut H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900821/
https://www.ncbi.nlm.nih.gov/pubmed/35234145
http://dx.doi.org/10.1107/S2059798322000432
Descripción
Sumario:InlB, a bacterial agonist of the human receptor tyrosine kinase MET, consists of an N-terminal internalin domain, a central B repeat and three C-terminal GW domains. In all previous structures of full-length InlB or an InlB construct lacking the GW domains (InlB(392)), there was no interpretable electron density for the B repeat. Here, three InlB(392) crystal structures in which the B repeat is resolved are described. These are the first structures to reveal the relative orientation of the internalin domain and the B repeat. A wild-type structure and two structures of the T332E variant together contain five crystallographically independent molecules. Surprisingly, the threonine-to-glutamate substitution in the B repeat substantially improved the crystallization propensity and crystal quality of the T332E variant. The internalin domain and B repeat are quite rigid internally, but are flexibly linked to each other. The new structures show that inter-domain flexibility is the most likely cause of the missing electron density for the B repeat in previous InlB structures. A potential binding groove between B-repeat strand β2 and an adjacent loop forms an important crystal contact in all five crystallographically independent chains. This region may represent a hydrophobic ‘sticky patch’ that supports protein–protein interactions. This assumption agrees with the previous finding that all known inactivating point mutations in the B repeat lie within strand β2. The groove formed by strand β2 and the adjacent loop may thus represent a functionally important protein–protein interaction site in the B repeat.