Cargando…

PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II

Intrahepatic cholangiocarcinoma (ICC) contains abundant myofibroblasts derived from hepatic stellate cells (HSCs) through an activation process mediated by TGF-β. To determine the role of programmed death-ligand 1 (PD-L1) in myofibroblastic activation of HSCs, we disrupted PD-L1 of HSCs by shRNA or...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Liankang, Wang, Yuanguo, Wang, Xianghu, Navarro-Corcuera, Amaia, Ilyas, Sumera, Jalan-Sakrikar, Nidhi, Gan, Can, Tu, Xinyi, Shi, Yu, Tu, Kangsheng, Liu, Qingguang, Lou, Zhenkun, Dong, Haidong, Sharpe, Arlene H., Shah, Vijay H., Kang, Ningling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8903892/
https://www.ncbi.nlm.nih.gov/pubmed/35139382
http://dx.doi.org/10.1016/j.celrep.2022.110349
_version_ 1784664861469310976
author Sun, Liankang
Wang, Yuanguo
Wang, Xianghu
Navarro-Corcuera, Amaia
Ilyas, Sumera
Jalan-Sakrikar, Nidhi
Gan, Can
Tu, Xinyi
Shi, Yu
Tu, Kangsheng
Liu, Qingguang
Lou, Zhenkun
Dong, Haidong
Sharpe, Arlene H.
Shah, Vijay H.
Kang, Ningling
author_facet Sun, Liankang
Wang, Yuanguo
Wang, Xianghu
Navarro-Corcuera, Amaia
Ilyas, Sumera
Jalan-Sakrikar, Nidhi
Gan, Can
Tu, Xinyi
Shi, Yu
Tu, Kangsheng
Liu, Qingguang
Lou, Zhenkun
Dong, Haidong
Sharpe, Arlene H.
Shah, Vijay H.
Kang, Ningling
author_sort Sun, Liankang
collection PubMed
description Intrahepatic cholangiocarcinoma (ICC) contains abundant myofibroblasts derived from hepatic stellate cells (HSCs) through an activation process mediated by TGF-β. To determine the role of programmed death-ligand 1 (PD-L1) in myofibroblastic activation of HSCs, we disrupted PD-L1 of HSCs by shRNA or anti-PD-L1 antibody. We find that PD-L1, produced by HSCs, is required for HSC activation by stabilizing TGF-β receptors I (TβRI) and II (TβRII). While the extracellular domain of PD-L1 (amino acids 19–238) targets TβRII protein to the plasma membrane and protects it from lysosomal degradation, a C-terminal 260-RLRKGR-265 motif on PD-L1 protects TβRI mRNA from degradation by the RNA exosome complex. PD-L1 is required for HSC expression of tumor-promoting factors, and targeting HSC PD-L1 by shRNA or Cre/loxP recombination suppresses HSC activation and ICC growth in mice. Thus, myofibroblast PD-L1 can modulate the tumor microenvironment and tumor growth by a mechanism independent of immune suppression.
format Online
Article
Text
id pubmed-8903892
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-89038922022-03-08 PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II Sun, Liankang Wang, Yuanguo Wang, Xianghu Navarro-Corcuera, Amaia Ilyas, Sumera Jalan-Sakrikar, Nidhi Gan, Can Tu, Xinyi Shi, Yu Tu, Kangsheng Liu, Qingguang Lou, Zhenkun Dong, Haidong Sharpe, Arlene H. Shah, Vijay H. Kang, Ningling Cell Rep Article Intrahepatic cholangiocarcinoma (ICC) contains abundant myofibroblasts derived from hepatic stellate cells (HSCs) through an activation process mediated by TGF-β. To determine the role of programmed death-ligand 1 (PD-L1) in myofibroblastic activation of HSCs, we disrupted PD-L1 of HSCs by shRNA or anti-PD-L1 antibody. We find that PD-L1, produced by HSCs, is required for HSC activation by stabilizing TGF-β receptors I (TβRI) and II (TβRII). While the extracellular domain of PD-L1 (amino acids 19–238) targets TβRII protein to the plasma membrane and protects it from lysosomal degradation, a C-terminal 260-RLRKGR-265 motif on PD-L1 protects TβRI mRNA from degradation by the RNA exosome complex. PD-L1 is required for HSC expression of tumor-promoting factors, and targeting HSC PD-L1 by shRNA or Cre/loxP recombination suppresses HSC activation and ICC growth in mice. Thus, myofibroblast PD-L1 can modulate the tumor microenvironment and tumor growth by a mechanism independent of immune suppression. 2022-02-08 /pmc/articles/PMC8903892/ /pubmed/35139382 http://dx.doi.org/10.1016/j.celrep.2022.110349 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Sun, Liankang
Wang, Yuanguo
Wang, Xianghu
Navarro-Corcuera, Amaia
Ilyas, Sumera
Jalan-Sakrikar, Nidhi
Gan, Can
Tu, Xinyi
Shi, Yu
Tu, Kangsheng
Liu, Qingguang
Lou, Zhenkun
Dong, Haidong
Sharpe, Arlene H.
Shah, Vijay H.
Kang, Ningling
PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II
title PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II
title_full PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II
title_fullStr PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II
title_full_unstemmed PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II
title_short PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II
title_sort pd-l1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for tgf-β receptor i versus ii
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8903892/
https://www.ncbi.nlm.nih.gov/pubmed/35139382
http://dx.doi.org/10.1016/j.celrep.2022.110349
work_keys_str_mv AT sunliankang pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT wangyuanguo pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT wangxianghu pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT navarrocorcueraamaia pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT ilyassumera pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT jalansakrikarnidhi pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT gancan pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT tuxinyi pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT shiyu pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT tukangsheng pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT liuqingguang pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT louzhenkun pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT donghaidong pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT sharpearleneh pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT shahvijayh pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii
AT kangningling pdl1promotesmyofibroblasticactivationofhepaticstellatecellsbydistinctmechanismsselectivefortgfbreceptoriversusii