Cargando…
Engineered Campylobacter jejuni Cas9 variant with enhanced activity and broader targeting range
The RNA-guided DNA endonuclease Cas9 is a versatile genome-editing tool. However, the molecular weight of the commonly used Streptococcus pyogenes Cas9 is relatively large. Consequently, its gene cannot be efficiently packaged into an adeno-associated virus vector, thereby limiting its applications...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904486/ https://www.ncbi.nlm.nih.gov/pubmed/35260779 http://dx.doi.org/10.1038/s42003-022-03149-7 |
Sumario: | The RNA-guided DNA endonuclease Cas9 is a versatile genome-editing tool. However, the molecular weight of the commonly used Streptococcus pyogenes Cas9 is relatively large. Consequently, its gene cannot be efficiently packaged into an adeno-associated virus vector, thereby limiting its applications for therapeutic genome editing. Here, we biochemically characterized the compact Cas9 from Campylobacter jejuni (CjCas9) and found that CjCas9 has a previously unrecognized preference for the N(3)VRYAC protospacer adjacent motif. We thus rationally engineered a CjCas9 variant (enCjCas9), which exhibits enhanced cleavage activity and a broader targeting range both in vitro and in human cells, as compared with CjCas9. Furthermore, a nickase version of enCjCas9, but not CjCas9, fused with a cytosine deaminase mediated C-to-T conversions in human cells. Overall, our findings expand the CRISPR-Cas toolbox for therapeutic genome engineering. |
---|