Cargando…
Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline
Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipelin...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906354/ https://www.ncbi.nlm.nih.gov/pubmed/34062207 http://dx.doi.org/10.1016/j.yjmcc.2021.05.015 |
_version_ | 1784665389815300096 |
---|---|
author | DeMarco, Kevin R. Yang, Pei-Chi Singh, Vikrant Furutani, Kazuharu Dawson, John R. D. Jeng, Mao-Tsuen Fettinger, James C. Bekker, Slava Ngo, Van A. Noskov, Sergei Y. Yarov-Yarovoy, Vladimir Sack, Jon T. Wulff, Heike Clancy, Colleen E. Vorobyov, Igor |
author_facet | DeMarco, Kevin R. Yang, Pei-Chi Singh, Vikrant Furutani, Kazuharu Dawson, John R. D. Jeng, Mao-Tsuen Fettinger, James C. Bekker, Slava Ngo, Van A. Noskov, Sergei Y. Yarov-Yarovoy, Vladimir Sack, Jon T. Wulff, Heike Clancy, Colleen E. Vorobyov, Igor |
author_sort | DeMarco, Kevin R. |
collection | PubMed |
description | Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipeline focusing on hERG channel – drug interactions and used it to probe and predict the mechanisms of pro-arrhythmia risks of the two enantiomers of sotalol. Molecular dynamics (MD) simulations predicted comparable hERG channel binding affinities for d- and l-sotalol, which were validated with electrophysiology experiments. MD derived thermodynamic and kinetic parameters were used to build multi-scale functional computational models of cardiac electrophysiology at the cell and tissue scales. Functional models were used to predict inactivated state binding affinities to recapitulate electrocardiogram (ECG) QT interval prolongation observed in clinical data. Our study demonstrates how modeling and simulation can be applied to predict drug effects from the atom to the rhythm for dl-sotalol and also increased proarrhythmia proclivity of d- vs. l-sotalol when accounting for stereospecific beta-adrenergic receptor blocking. |
format | Online Article Text |
id | pubmed-8906354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-89063542022-03-09 Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline DeMarco, Kevin R. Yang, Pei-Chi Singh, Vikrant Furutani, Kazuharu Dawson, John R. D. Jeng, Mao-Tsuen Fettinger, James C. Bekker, Slava Ngo, Van A. Noskov, Sergei Y. Yarov-Yarovoy, Vladimir Sack, Jon T. Wulff, Heike Clancy, Colleen E. Vorobyov, Igor J Mol Cell Cardiol Article Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipeline focusing on hERG channel – drug interactions and used it to probe and predict the mechanisms of pro-arrhythmia risks of the two enantiomers of sotalol. Molecular dynamics (MD) simulations predicted comparable hERG channel binding affinities for d- and l-sotalol, which were validated with electrophysiology experiments. MD derived thermodynamic and kinetic parameters were used to build multi-scale functional computational models of cardiac electrophysiology at the cell and tissue scales. Functional models were used to predict inactivated state binding affinities to recapitulate electrocardiogram (ECG) QT interval prolongation observed in clinical data. Our study demonstrates how modeling and simulation can be applied to predict drug effects from the atom to the rhythm for dl-sotalol and also increased proarrhythmia proclivity of d- vs. l-sotalol when accounting for stereospecific beta-adrenergic receptor blocking. 2021-09 2021-05-29 /pmc/articles/PMC8906354/ /pubmed/34062207 http://dx.doi.org/10.1016/j.yjmcc.2021.05.015 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article DeMarco, Kevin R. Yang, Pei-Chi Singh, Vikrant Furutani, Kazuharu Dawson, John R. D. Jeng, Mao-Tsuen Fettinger, James C. Bekker, Slava Ngo, Van A. Noskov, Sergei Y. Yarov-Yarovoy, Vladimir Sack, Jon T. Wulff, Heike Clancy, Colleen E. Vorobyov, Igor Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline |
title | Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline |
title_full | Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline |
title_fullStr | Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline |
title_full_unstemmed | Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline |
title_short | Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline |
title_sort | molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906354/ https://www.ncbi.nlm.nih.gov/pubmed/34062207 http://dx.doi.org/10.1016/j.yjmcc.2021.05.015 |
work_keys_str_mv | AT demarcokevinr moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT yangpeichi moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT singhvikrant moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT furutanikazuharu moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT dawsonjohnrd moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT jengmaotsuen moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT fettingerjamesc moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT bekkerslava moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT ngovana moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT noskovsergeiy moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT yarovyarovoyvladimir moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT sackjont moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT wulffheike moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT clancycolleene moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline AT vorobyovigor moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline |