Cargando…

Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline

Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipelin...

Descripción completa

Detalles Bibliográficos
Autores principales: DeMarco, Kevin R., Yang, Pei-Chi, Singh, Vikrant, Furutani, Kazuharu, Dawson, John R. D., Jeng, Mao-Tsuen, Fettinger, James C., Bekker, Slava, Ngo, Van A., Noskov, Sergei Y., Yarov-Yarovoy, Vladimir, Sack, Jon T., Wulff, Heike, Clancy, Colleen E., Vorobyov, Igor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906354/
https://www.ncbi.nlm.nih.gov/pubmed/34062207
http://dx.doi.org/10.1016/j.yjmcc.2021.05.015
_version_ 1784665389815300096
author DeMarco, Kevin R.
Yang, Pei-Chi
Singh, Vikrant
Furutani, Kazuharu
Dawson, John R. D.
Jeng, Mao-Tsuen
Fettinger, James C.
Bekker, Slava
Ngo, Van A.
Noskov, Sergei Y.
Yarov-Yarovoy, Vladimir
Sack, Jon T.
Wulff, Heike
Clancy, Colleen E.
Vorobyov, Igor
author_facet DeMarco, Kevin R.
Yang, Pei-Chi
Singh, Vikrant
Furutani, Kazuharu
Dawson, John R. D.
Jeng, Mao-Tsuen
Fettinger, James C.
Bekker, Slava
Ngo, Van A.
Noskov, Sergei Y.
Yarov-Yarovoy, Vladimir
Sack, Jon T.
Wulff, Heike
Clancy, Colleen E.
Vorobyov, Igor
author_sort DeMarco, Kevin R.
collection PubMed
description Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipeline focusing on hERG channel – drug interactions and used it to probe and predict the mechanisms of pro-arrhythmia risks of the two enantiomers of sotalol. Molecular dynamics (MD) simulations predicted comparable hERG channel binding affinities for d- and l-sotalol, which were validated with electrophysiology experiments. MD derived thermodynamic and kinetic parameters were used to build multi-scale functional computational models of cardiac electrophysiology at the cell and tissue scales. Functional models were used to predict inactivated state binding affinities to recapitulate electrocardiogram (ECG) QT interval prolongation observed in clinical data. Our study demonstrates how modeling and simulation can be applied to predict drug effects from the atom to the rhythm for dl-sotalol and also increased proarrhythmia proclivity of d- vs. l-sotalol when accounting for stereospecific beta-adrenergic receptor blocking.
format Online
Article
Text
id pubmed-8906354
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-89063542022-03-09 Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline DeMarco, Kevin R. Yang, Pei-Chi Singh, Vikrant Furutani, Kazuharu Dawson, John R. D. Jeng, Mao-Tsuen Fettinger, James C. Bekker, Slava Ngo, Van A. Noskov, Sergei Y. Yarov-Yarovoy, Vladimir Sack, Jon T. Wulff, Heike Clancy, Colleen E. Vorobyov, Igor J Mol Cell Cardiol Article Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipeline focusing on hERG channel – drug interactions and used it to probe and predict the mechanisms of pro-arrhythmia risks of the two enantiomers of sotalol. Molecular dynamics (MD) simulations predicted comparable hERG channel binding affinities for d- and l-sotalol, which were validated with electrophysiology experiments. MD derived thermodynamic and kinetic parameters were used to build multi-scale functional computational models of cardiac electrophysiology at the cell and tissue scales. Functional models were used to predict inactivated state binding affinities to recapitulate electrocardiogram (ECG) QT interval prolongation observed in clinical data. Our study demonstrates how modeling and simulation can be applied to predict drug effects from the atom to the rhythm for dl-sotalol and also increased proarrhythmia proclivity of d- vs. l-sotalol when accounting for stereospecific beta-adrenergic receptor blocking. 2021-09 2021-05-29 /pmc/articles/PMC8906354/ /pubmed/34062207 http://dx.doi.org/10.1016/j.yjmcc.2021.05.015 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
DeMarco, Kevin R.
Yang, Pei-Chi
Singh, Vikrant
Furutani, Kazuharu
Dawson, John R. D.
Jeng, Mao-Tsuen
Fettinger, James C.
Bekker, Slava
Ngo, Van A.
Noskov, Sergei Y.
Yarov-Yarovoy, Vladimir
Sack, Jon T.
Wulff, Heike
Clancy, Colleen E.
Vorobyov, Igor
Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline
title Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline
title_full Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline
title_fullStr Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline
title_full_unstemmed Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline
title_short Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline
title_sort molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906354/
https://www.ncbi.nlm.nih.gov/pubmed/34062207
http://dx.doi.org/10.1016/j.yjmcc.2021.05.015
work_keys_str_mv AT demarcokevinr moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT yangpeichi moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT singhvikrant moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT furutanikazuharu moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT dawsonjohnrd moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT jengmaotsuen moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT fettingerjamesc moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT bekkerslava moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT ngovana moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT noskovsergeiy moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT yarovyarovoyvladimir moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT sackjont moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT wulffheike moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT clancycolleene moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline
AT vorobyovigor moleculardeterminantsofproarrhythmiaproclivityofdandlsotalolviaamultiscalemodelingpipeline