Cargando…

IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data

The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Heydari, Tiam, A. Langley, Matthew, Fisher, Cynthia L., Aguilar-Hidalgo, Daniel, Shukla, Shreya, Yachie-Kinoshita, Ayako, Hughes, Michael, M. McNagny, Kelly, Zandstra, Peter W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906617/
https://www.ncbi.nlm.nih.gov/pubmed/35213533
http://dx.doi.org/10.1371/journal.pcbi.1009907
_version_ 1784665444260511744
author Heydari, Tiam
A. Langley, Matthew
Fisher, Cynthia L.
Aguilar-Hidalgo, Daniel
Shukla, Shreya
Yachie-Kinoshita, Ayako
Hughes, Michael
M. McNagny, Kelly
Zandstra, Peter W.
author_facet Heydari, Tiam
A. Langley, Matthew
Fisher, Cynthia L.
Aguilar-Hidalgo, Daniel
Shukla, Shreya
Yachie-Kinoshita, Ayako
Hughes, Michael
M. McNagny, Kelly
Zandstra, Peter W.
author_sort Heydari, Tiam
collection PubMed
description The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems.
format Online
Article
Text
id pubmed-8906617
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-89066172022-03-10 IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data Heydari, Tiam A. Langley, Matthew Fisher, Cynthia L. Aguilar-Hidalgo, Daniel Shukla, Shreya Yachie-Kinoshita, Ayako Hughes, Michael M. McNagny, Kelly Zandstra, Peter W. PLoS Comput Biol Research Article The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems. Public Library of Science 2022-02-25 /pmc/articles/PMC8906617/ /pubmed/35213533 http://dx.doi.org/10.1371/journal.pcbi.1009907 Text en © 2022 Heydari et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Heydari, Tiam
A. Langley, Matthew
Fisher, Cynthia L.
Aguilar-Hidalgo, Daniel
Shukla, Shreya
Yachie-Kinoshita, Ayako
Hughes, Michael
M. McNagny, Kelly
Zandstra, Peter W.
IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data
title IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data
title_full IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data
title_fullStr IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data
title_full_unstemmed IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data
title_short IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data
title_sort iqcell: a platform for predicting the effect of gene perturbations on developmental trajectories using single-cell rna-seq data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906617/
https://www.ncbi.nlm.nih.gov/pubmed/35213533
http://dx.doi.org/10.1371/journal.pcbi.1009907
work_keys_str_mv AT heydaritiam iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata
AT alangleymatthew iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata
AT fishercynthial iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata
AT aguilarhidalgodaniel iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata
AT shuklashreya iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata
AT yachiekinoshitaayako iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata
AT hughesmichael iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata
AT mmcnagnykelly iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata
AT zandstrapeterw iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata