Cargando…
IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data
The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly fro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906617/ https://www.ncbi.nlm.nih.gov/pubmed/35213533 http://dx.doi.org/10.1371/journal.pcbi.1009907 |
_version_ | 1784665444260511744 |
---|---|
author | Heydari, Tiam A. Langley, Matthew Fisher, Cynthia L. Aguilar-Hidalgo, Daniel Shukla, Shreya Yachie-Kinoshita, Ayako Hughes, Michael M. McNagny, Kelly Zandstra, Peter W. |
author_facet | Heydari, Tiam A. Langley, Matthew Fisher, Cynthia L. Aguilar-Hidalgo, Daniel Shukla, Shreya Yachie-Kinoshita, Ayako Hughes, Michael M. McNagny, Kelly Zandstra, Peter W. |
author_sort | Heydari, Tiam |
collection | PubMed |
description | The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems. |
format | Online Article Text |
id | pubmed-8906617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-89066172022-03-10 IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data Heydari, Tiam A. Langley, Matthew Fisher, Cynthia L. Aguilar-Hidalgo, Daniel Shukla, Shreya Yachie-Kinoshita, Ayako Hughes, Michael M. McNagny, Kelly Zandstra, Peter W. PLoS Comput Biol Research Article The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems. Public Library of Science 2022-02-25 /pmc/articles/PMC8906617/ /pubmed/35213533 http://dx.doi.org/10.1371/journal.pcbi.1009907 Text en © 2022 Heydari et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Heydari, Tiam A. Langley, Matthew Fisher, Cynthia L. Aguilar-Hidalgo, Daniel Shukla, Shreya Yachie-Kinoshita, Ayako Hughes, Michael M. McNagny, Kelly Zandstra, Peter W. IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data |
title | IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data |
title_full | IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data |
title_fullStr | IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data |
title_full_unstemmed | IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data |
title_short | IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data |
title_sort | iqcell: a platform for predicting the effect of gene perturbations on developmental trajectories using single-cell rna-seq data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906617/ https://www.ncbi.nlm.nih.gov/pubmed/35213533 http://dx.doi.org/10.1371/journal.pcbi.1009907 |
work_keys_str_mv | AT heydaritiam iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata AT alangleymatthew iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata AT fishercynthial iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata AT aguilarhidalgodaniel iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata AT shuklashreya iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata AT yachiekinoshitaayako iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata AT hughesmichael iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata AT mmcnagnykelly iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata AT zandstrapeterw iqcellaplatformforpredictingtheeffectofgeneperturbationsondevelopmentaltrajectoriesusingsinglecellrnaseqdata |