Cargando…
Deep Learning-Based Pan-Cancer Classification Model Reveals Tissue-of-Origin Specific Gene Expression Signatures
SIMPLE SUMMARY: Gene expression data from different cancer types offer the opportunity to identify cancer tissue-of-origin specific biomarkers and targets. In this study, we used pan-cancer gene expression data to train a deep learning neural network model to identify cancer tissue-of-origin specifi...
Autores principales: | Divate, Mayur, Tyagi, Aayush, Richard, Derek J., Prasad, Prathosh A., Gowda, Harsha, Nagaraj, Shivashankar H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909043/ https://www.ncbi.nlm.nih.gov/pubmed/35267493 http://dx.doi.org/10.3390/cancers14051185 |
Ejemplares similares
-
ImaGene: a web-based software platform for tumor radiogenomic evaluation and reporting
por: Sukhadia, Shrey S, et al.
Publicado: (2022) -
Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin
por: González-Reymúndez, Agustín, et al.
Publicado: (2020) -
Assessment and classification of protocol deviations
por: Ghooi, Ravindra Bhaskar, et al.
Publicado: (2016) -
GUAVA: A Graphical User Interface for the Analysis and Visualization of ATAC-seq Data
por: Divate, Mayur, et al.
Publicado: (2018) -
Origin and Deep Evolution of Human Endogenous Retroviruses in Pan-Primates
por: Li, Yian, et al.
Publicado: (2022)