Cargando…
Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses
G-protein coupled receptor (GPCR) kinase 2 (GRK2) is upregulated in heart failure (HF) patients and mouse models of cardiac disease. GRK2 is a regulator of β-adrenergic receptors (βARs), a GPCR involved in ionotropic and chronotropic responses. We and others have recently reported GRK2 to be localiz...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911442/ https://www.ncbi.nlm.nih.gov/pubmed/35269919 http://dx.doi.org/10.3390/ijms23052777 |
_version_ | 1784666807381000192 |
---|---|
author | Zhai, Ruxu Varner, Erika L. Rao, Ajay Karhadkar, Sunil Di Carlo, Antonio Snyder, Nathaniel W. Sato, Priscila Y. |
author_facet | Zhai, Ruxu Varner, Erika L. Rao, Ajay Karhadkar, Sunil Di Carlo, Antonio Snyder, Nathaniel W. Sato, Priscila Y. |
author_sort | Zhai, Ruxu |
collection | PubMed |
description | G-protein coupled receptor (GPCR) kinase 2 (GRK2) is upregulated in heart failure (HF) patients and mouse models of cardiac disease. GRK2 is a regulator of β-adrenergic receptors (βARs), a GPCR involved in ionotropic and chronotropic responses. We and others have recently reported GRK2 to be localized in the mitochondria, although its function in the mitochondria and/or metabolism remain not clearly defined. We hypothesized that upregulation of GRK2 reduced mitochondrial respiratory function and responses to βAR activation. Utilizing isolated mouse primary adult cardiomyocytes (ACMs), we investigated the role of glucose, palmitate, ketone bodies, and BCAAs in mediating cell survival. Our results showed that myocyte upregulation of GRK2 promotes palmitate-induced cell death. Isotopologue labeling and mass spectrometry showed that the upregulation of GRK2 reduces β-hydroxybutyryl CoA generation. Next, using isoproterenol (ISO), a non-selective βAR-agonist, we determined mitochondrial function in mouse and human primary ACMs. Upregulation of GRK2 impaired ISO-mediated mitochondrial functional responses, which we propose is important for metabolic adaptations in pathological conditions. Increased cardiac levels of GRK2 reduced fatty acid-specific catabolic pathways and impaired ISO-stimulated mitochondrial function. Our data support the notion that GRK2 participates in bioenergetic remodeling and may be an important avenue for the development of novel pharmacological strategies in HF. |
format | Online Article Text |
id | pubmed-8911442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89114422022-03-11 Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses Zhai, Ruxu Varner, Erika L. Rao, Ajay Karhadkar, Sunil Di Carlo, Antonio Snyder, Nathaniel W. Sato, Priscila Y. Int J Mol Sci Article G-protein coupled receptor (GPCR) kinase 2 (GRK2) is upregulated in heart failure (HF) patients and mouse models of cardiac disease. GRK2 is a regulator of β-adrenergic receptors (βARs), a GPCR involved in ionotropic and chronotropic responses. We and others have recently reported GRK2 to be localized in the mitochondria, although its function in the mitochondria and/or metabolism remain not clearly defined. We hypothesized that upregulation of GRK2 reduced mitochondrial respiratory function and responses to βAR activation. Utilizing isolated mouse primary adult cardiomyocytes (ACMs), we investigated the role of glucose, palmitate, ketone bodies, and BCAAs in mediating cell survival. Our results showed that myocyte upregulation of GRK2 promotes palmitate-induced cell death. Isotopologue labeling and mass spectrometry showed that the upregulation of GRK2 reduces β-hydroxybutyryl CoA generation. Next, using isoproterenol (ISO), a non-selective βAR-agonist, we determined mitochondrial function in mouse and human primary ACMs. Upregulation of GRK2 impaired ISO-mediated mitochondrial functional responses, which we propose is important for metabolic adaptations in pathological conditions. Increased cardiac levels of GRK2 reduced fatty acid-specific catabolic pathways and impaired ISO-stimulated mitochondrial function. Our data support the notion that GRK2 participates in bioenergetic remodeling and may be an important avenue for the development of novel pharmacological strategies in HF. MDPI 2022-03-03 /pmc/articles/PMC8911442/ /pubmed/35269919 http://dx.doi.org/10.3390/ijms23052777 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhai, Ruxu Varner, Erika L. Rao, Ajay Karhadkar, Sunil Di Carlo, Antonio Snyder, Nathaniel W. Sato, Priscila Y. Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses |
title | Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses |
title_full | Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses |
title_fullStr | Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses |
title_full_unstemmed | Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses |
title_short | Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses |
title_sort | myocardial grk2 reduces fatty acid metabolism and β-adrenergic receptor-mediated mitochondrial responses |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911442/ https://www.ncbi.nlm.nih.gov/pubmed/35269919 http://dx.doi.org/10.3390/ijms23052777 |
work_keys_str_mv | AT zhairuxu myocardialgrk2reducesfattyacidmetabolismandbadrenergicreceptormediatedmitochondrialresponses AT varnererikal myocardialgrk2reducesfattyacidmetabolismandbadrenergicreceptormediatedmitochondrialresponses AT raoajay myocardialgrk2reducesfattyacidmetabolismandbadrenergicreceptormediatedmitochondrialresponses AT karhadkarsunil myocardialgrk2reducesfattyacidmetabolismandbadrenergicreceptormediatedmitochondrialresponses AT dicarloantonio myocardialgrk2reducesfattyacidmetabolismandbadrenergicreceptormediatedmitochondrialresponses AT snydernathanielw myocardialgrk2reducesfattyacidmetabolismandbadrenergicreceptormediatedmitochondrialresponses AT satopriscilay myocardialgrk2reducesfattyacidmetabolismandbadrenergicreceptormediatedmitochondrialresponses |