Cargando…
Potential of TiN/GaN Heterostructures for Hot Carrier Generation and Collection
Herein, we find that TiN sputter-deposited on GaN displayed the desired optical properties for plasmonic applications. While this is a positive result indicating the possible use of p- or n-type GaN as a collector of plasmonically generated hot carriers, the interfacial properties differed considera...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912733/ https://www.ncbi.nlm.nih.gov/pubmed/35269325 http://dx.doi.org/10.3390/nano12050837 |
Sumario: | Herein, we find that TiN sputter-deposited on GaN displayed the desired optical properties for plasmonic applications. While this is a positive result indicating the possible use of p- or n-type GaN as a collector of plasmonically generated hot carriers, the interfacial properties differed considerably depending on doping conditions. On p-type GaN, a distinct Schottky barrier was formed with a barrier height of ~0.56 eV, which will enable effective separation of photogenerated electrons and holes, a typical approach used to extend their lifetimes. On the other hand, no transport barrier was found for TiN on n-type GaN. While the lack of spontaneous carrier separation in this system will likely reduce unprompted hot carrier collection efficiencies, it enables a bias-dependent response whereby charges of the desired type (e.g., electrons) could be directed into the semiconductor or sequestered in the plasmonic material. The specific application of interest would determine which of these conditions is most desirable. |
---|