Cargando…
Identifying the Strength Level of Objects’ Tactile Attributes Using a Multi-Scale Convolutional Neural Network
In order to solve the problem in which most currently existing research focuses on the binary tactile attributes of objects and ignores identifying the strength level of tactile attributes, this paper establishes a tactile data set of the strength level of objects’ elasticity and hardness attributes...
Autores principales: | Zhang, Peng, Yu, Guoqi, Shan, Dongri, Chen, Zhenxue, Wang, Xiaofang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914820/ https://www.ncbi.nlm.nih.gov/pubmed/35271055 http://dx.doi.org/10.3390/s22051908 |
Ejemplares similares
-
Using 3D Convolutional Neural Networks for Tactile Object Recognition with Robotic Palpation
por: Pastor, Francisco, et al.
Publicado: (2019) -
Face Attribute Estimation Using Multi-Task Convolutional Neural Network
por: Kawai, Hiroya, et al.
Publicado: (2022) -
A multi-branch separable convolution neural network for pedestrian attribute recognition
por: Junejo, Imran N., et al.
Publicado: (2020) -
A Novel Bilinear Feature and Multi-Layer Fused Convolutional Neural Network for Tactile Shape Recognition
por: Chu, Jie, et al.
Publicado: (2020) -
Multi-objective simulated annealing for hyper-parameter optimization in convolutional neural networks
por: Gülcü, Ayla, et al.
Publicado: (2021)