Cargando…

Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures

[Image: see text] The ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl(3), we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Rizzo, Daniel J., Shabani, Sara, Jessen, Bjarke S., Zhang, Jin, McLeod, Alexander S., Rubio-Verdú, Carmen, Ruta, Francesco L., Cothrine, Matthew, Yan, Jiaqiang, Mandrus, David G., Nagler, Stephen E., Rubio, Angel, Hone, James C., Dean, Cory R., Pasupathy, Abhay N., Basov, D. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915251/
https://www.ncbi.nlm.nih.gov/pubmed/35226804
http://dx.doi.org/10.1021/acs.nanolett.1c04579
_version_ 1784667975941357568
author Rizzo, Daniel J.
Shabani, Sara
Jessen, Bjarke S.
Zhang, Jin
McLeod, Alexander S.
Rubio-Verdú, Carmen
Ruta, Francesco L.
Cothrine, Matthew
Yan, Jiaqiang
Mandrus, David G.
Nagler, Stephen E.
Rubio, Angel
Hone, James C.
Dean, Cory R.
Pasupathy, Abhay N.
Basov, D. N.
author_facet Rizzo, Daniel J.
Shabani, Sara
Jessen, Bjarke S.
Zhang, Jin
McLeod, Alexander S.
Rubio-Verdú, Carmen
Ruta, Francesco L.
Cothrine, Matthew
Yan, Jiaqiang
Mandrus, David G.
Nagler, Stephen E.
Rubio, Angel
Hone, James C.
Dean, Cory R.
Pasupathy, Abhay N.
Basov, D. N.
author_sort Rizzo, Daniel J.
collection PubMed
description [Image: see text] The ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl(3), we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p–n junctions. Our STM/STS results reveal that p–n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 10(8) V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p–n nanojunctions in 2D materials.
format Online
Article
Text
id pubmed-8915251
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-89152512022-03-14 Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures Rizzo, Daniel J. Shabani, Sara Jessen, Bjarke S. Zhang, Jin McLeod, Alexander S. Rubio-Verdú, Carmen Ruta, Francesco L. Cothrine, Matthew Yan, Jiaqiang Mandrus, David G. Nagler, Stephen E. Rubio, Angel Hone, James C. Dean, Cory R. Pasupathy, Abhay N. Basov, D. N. Nano Lett [Image: see text] The ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl(3), we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p–n junctions. Our STM/STS results reveal that p–n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 10(8) V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p–n nanojunctions in 2D materials. American Chemical Society 2022-02-28 2022-03-09 /pmc/articles/PMC8915251/ /pubmed/35226804 http://dx.doi.org/10.1021/acs.nanolett.1c04579 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Rizzo, Daniel J.
Shabani, Sara
Jessen, Bjarke S.
Zhang, Jin
McLeod, Alexander S.
Rubio-Verdú, Carmen
Ruta, Francesco L.
Cothrine, Matthew
Yan, Jiaqiang
Mandrus, David G.
Nagler, Stephen E.
Rubio, Angel
Hone, James C.
Dean, Cory R.
Pasupathy, Abhay N.
Basov, D. N.
Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures
title Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures
title_full Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures
title_fullStr Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures
title_full_unstemmed Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures
title_short Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures
title_sort nanometer-scale lateral p–n junctions in graphene/α-rucl(3) heterostructures
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915251/
https://www.ncbi.nlm.nih.gov/pubmed/35226804
http://dx.doi.org/10.1021/acs.nanolett.1c04579
work_keys_str_mv AT rizzodanielj nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT shabanisara nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT jessenbjarkes nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT zhangjin nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT mcleodalexanders nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT rubioverducarmen nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT rutafrancescol nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT cothrinematthew nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT yanjiaqiang nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT mandrusdavidg nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT naglerstephene nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT rubioangel nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT honejamesc nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT deancoryr nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT pasupathyabhayn nanometerscalelateralpnjunctionsingraphenearucl3heterostructures
AT basovdn nanometerscalelateralpnjunctionsingraphenearucl3heterostructures