Cargando…
Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures
[Image: see text] The ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl(3), we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our mu...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915251/ https://www.ncbi.nlm.nih.gov/pubmed/35226804 http://dx.doi.org/10.1021/acs.nanolett.1c04579 |
_version_ | 1784667975941357568 |
---|---|
author | Rizzo, Daniel J. Shabani, Sara Jessen, Bjarke S. Zhang, Jin McLeod, Alexander S. Rubio-Verdú, Carmen Ruta, Francesco L. Cothrine, Matthew Yan, Jiaqiang Mandrus, David G. Nagler, Stephen E. Rubio, Angel Hone, James C. Dean, Cory R. Pasupathy, Abhay N. Basov, D. N. |
author_facet | Rizzo, Daniel J. Shabani, Sara Jessen, Bjarke S. Zhang, Jin McLeod, Alexander S. Rubio-Verdú, Carmen Ruta, Francesco L. Cothrine, Matthew Yan, Jiaqiang Mandrus, David G. Nagler, Stephen E. Rubio, Angel Hone, James C. Dean, Cory R. Pasupathy, Abhay N. Basov, D. N. |
author_sort | Rizzo, Daniel J. |
collection | PubMed |
description | [Image: see text] The ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl(3), we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p–n junctions. Our STM/STS results reveal that p–n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 10(8) V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p–n nanojunctions in 2D materials. |
format | Online Article Text |
id | pubmed-8915251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89152512022-03-14 Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures Rizzo, Daniel J. Shabani, Sara Jessen, Bjarke S. Zhang, Jin McLeod, Alexander S. Rubio-Verdú, Carmen Ruta, Francesco L. Cothrine, Matthew Yan, Jiaqiang Mandrus, David G. Nagler, Stephen E. Rubio, Angel Hone, James C. Dean, Cory R. Pasupathy, Abhay N. Basov, D. N. Nano Lett [Image: see text] The ability to create nanometer-scale lateral p–n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl(3), we realize nanoscale lateral p–n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p–n junctions. Our STM/STS results reveal that p–n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 10(8) V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p–n nanojunctions in 2D materials. American Chemical Society 2022-02-28 2022-03-09 /pmc/articles/PMC8915251/ /pubmed/35226804 http://dx.doi.org/10.1021/acs.nanolett.1c04579 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Rizzo, Daniel J. Shabani, Sara Jessen, Bjarke S. Zhang, Jin McLeod, Alexander S. Rubio-Verdú, Carmen Ruta, Francesco L. Cothrine, Matthew Yan, Jiaqiang Mandrus, David G. Nagler, Stephen E. Rubio, Angel Hone, James C. Dean, Cory R. Pasupathy, Abhay N. Basov, D. N. Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures |
title | Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures |
title_full | Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures |
title_fullStr | Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures |
title_full_unstemmed | Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures |
title_short | Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl(3) Heterostructures |
title_sort | nanometer-scale lateral p–n junctions in graphene/α-rucl(3) heterostructures |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915251/ https://www.ncbi.nlm.nih.gov/pubmed/35226804 http://dx.doi.org/10.1021/acs.nanolett.1c04579 |
work_keys_str_mv | AT rizzodanielj nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT shabanisara nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT jessenbjarkes nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT zhangjin nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT mcleodalexanders nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT rubioverducarmen nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT rutafrancescol nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT cothrinematthew nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT yanjiaqiang nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT mandrusdavidg nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT naglerstephene nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT rubioangel nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT honejamesc nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT deancoryr nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT pasupathyabhayn nanometerscalelateralpnjunctionsingraphenearucl3heterostructures AT basovdn nanometerscalelateralpnjunctionsingraphenearucl3heterostructures |