Cargando…

Cheap robust learning of data anomalies with analytically solvable entropic outlier sparsification

Entropic outlier sparsification (EOS) is proposed as a cheap and robust computational strategy for learning in the presence of data anomalies and outliers. EOS dwells on the derived analytic solution of the (weighted) expected loss minimization problem subject to Shannon entropy regularization. An i...

Descripción completa

Detalles Bibliográficos
Autor principal: Horenko, Illia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917346/
https://www.ncbi.nlm.nih.gov/pubmed/35197293
http://dx.doi.org/10.1073/pnas.2119659119