Cargando…
Cheap robust learning of data anomalies with analytically solvable entropic outlier sparsification
Entropic outlier sparsification (EOS) is proposed as a cheap and robust computational strategy for learning in the presence of data anomalies and outliers. EOS dwells on the derived analytic solution of the (weighted) expected loss minimization problem subject to Shannon entropy regularization. An i...
Autor principal: | Horenko, Illia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917346/ https://www.ncbi.nlm.nih.gov/pubmed/35197293 http://dx.doi.org/10.1073/pnas.2119659119 |
Ejemplares similares
-
On cheap entropy-sparsified regression learning
por: Horenko, Illia, et al.
Publicado: (2022) -
On the combinatorics of sparsification
por: Huang, Fenix WD, et al.
Publicado: (2012) -
Adversarially Robust Learning via Entropic Regularization
por: Jagatap, Gauri, et al.
Publicado: (2022) -
A theory of entropic bonding
por: Vo, Thi, et al.
Publicado: (2022) -
Variational Dropout Sparsification for Particle Identification speed-up
por: Ryzhikov, Artem, et al.
Publicado: (2020)