Cargando…
Deep learning-driven prediction of drug mechanism of action from large-scale chemical-genetic interaction profiles
MOTIVATION: Chemical–genetic interaction profiling is a genetic approach that quantifies the susceptibility of a set of mutants depleted in specific gene product(s) to a set of chemical compounds. With the recent advances in artificial intelligence, chemical–genetic interaction profiles (CGIPs) can...
Autores principales: | Liu, Chengyou, Hogan, Andrew M., Sturm, Hunter, Khan, Mohd Wasif, Islam, Md. Mohaiminul, Rahman, A. S. M. Zisanur, Davis, Rebecca, Cardona, Silvia T., Hu, Pingzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917716/ https://www.ncbi.nlm.nih.gov/pubmed/35279211 http://dx.doi.org/10.1186/s13321-022-00596-6 |
Ejemplares similares
-
A machine learning model trained on a high-throughput antibacterial screen increases the hit rate of drug discovery
por: Rahman, A. S. M. Zisanur, et al.
Publicado: (2022) -
Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means
por: Hadipour, Hamid, et al.
Publicado: (2022) -
Differential Private Deep Learning Models for Analyzing Breast Cancer Omics Data
por: Islam, Md. Mohaiminul, et al.
Publicado: (2022) -
A deep neural network based regression model for triglyceride concentrations prediction using epigenome-wide DNA methylation profiles
por: Islam, Md. Mohaiminul, et al.
Publicado: (2018) -
An integrative deep learning framework for classifying molecular subtypes of breast cancer
por: Mohaiminul Islam, Md., et al.
Publicado: (2020)