Cargando…
Metagenomic Geolocation Using Read Signatures
We present a novel approach to the Metagenomic Geolocation Challenge based on random projection of the sample reads from each location. This approach explores the direct use of k-mer composition to characterise samples so that we can avoid the computationally demanding step of aligning reads to avai...
Autores principales: | Chappell , Timothy, Geva , Shlomo, Hogan , James M., Lovell , David, Trotman , Andrew, Perrin , Dimitri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918732/ https://www.ncbi.nlm.nih.gov/pubmed/35295949 http://dx.doi.org/10.3389/fgene.2022.643592 |
Ejemplares similares
-
Rapid analysis of metagenomic data using signature-based clustering
por: Chappell, Timothy, et al.
Publicado: (2018) -
Metagenomic Geolocation Prediction Using an Adaptive Ensemble Classifier
por: Anyaso-Samuel, Samuel, et al.
Publicado: (2021) -
Unraveling City-Specific Microbial Signatures and Identifying Sample Origins for the Data From CAMDA 2020 Metagenomic Geolocation Challenge
por: Zhang, Runzhi, et al.
Publicado: (2021) -
Reads Binning Improves Alignment-Free Metagenome Comparison
por: Song, Kai, et al.
Publicado: (2019) -
A machine learning framework to determine geolocations from metagenomic profiling
por: Huang, Lihong, et al.
Publicado: (2020)