Cargando…
ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding
MOTIVATION: Drug-target binding affinity (DTA) reflects the strength of the drug-target interaction; therefore, predicting the DTA can considerably benefit drug discovery by narrowing the search space and pruning drug-target (DT) pairs with low binding affinity scores. Representation learning using...
Autores principales: | Wang, Junjie, Wen, NaiFeng, Wang, Chunyu, Zhao, Lingling, Cheng, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922401/ https://www.ncbi.nlm.nih.gov/pubmed/35292100 http://dx.doi.org/10.1186/s13321-022-00591-x |
Ejemplares similares
-
DataDTA: a multi-feature and dual-interaction aggregation framework for drug–target binding affinity prediction
por: Zhu, Yan, et al.
Publicado: (2023) -
Modeling DTA by Combining Multiple-Instance Learning with a Private-Public Mechanism
por: Wang, Chunyu, et al.
Publicado: (2022) -
GANsDTA: Predicting Drug-Target Binding Affinity Using GANs
por: Zhao, Lingling, et al.
Publicado: (2020) -
Electra /
por: Eurípides
Publicado: (1989) -
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018)