Cargando…

Optimal scaling of random walk Metropolis algorithms using Bayesian large-sample asymptotics

High-dimensional limit theorems have been shown useful to derive tuning rules for finding the optimal scaling in random walk Metropolis algorithms. The assumptions under which weak convergence results are proved are, however, restrictive: the target density is typically assumed to be of a product fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmon, Sebastian M., Gagnon, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924149/
https://www.ncbi.nlm.nih.gov/pubmed/35310543
http://dx.doi.org/10.1007/s11222-022-10080-8