Cargando…

Probiotic Bifidobacterium breve Prevents Memory Impairment Through the Reduction of Both Amyloid-β Production and Microglia Activation in APP Knock-In Mouse(1)

BACKGROUND: Probiotic supplementation reestablishes microbiome diversity and improves brain function in Alzheimer’s disease (AD); their molecular mechanisms, however, have not yet been fully illustrated. OBJECTIVE: We investigated the effects of orally supplemented Bifidobacterium breve MCC1274 on c...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdelhamid, Mona, Zhou, Chunyu, Ohno, Kazuya, Kuhara, Tetsuya, Taslima, Ferdous, Abdullah, Mohammad, Jung, Cha-Gyun, Michikawa, Makoto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8925106/
https://www.ncbi.nlm.nih.gov/pubmed/34958017
http://dx.doi.org/10.3233/JAD-215025
Descripción
Sumario:BACKGROUND: Probiotic supplementation reestablishes microbiome diversity and improves brain function in Alzheimer’s disease (AD); their molecular mechanisms, however, have not yet been fully illustrated. OBJECTIVE: We investigated the effects of orally supplemented Bifidobacterium breve MCC1274 on cognitive function and AD-like pathologies in App(NL-G-F) mice. METHODS: Three-month-old App(NL-G-F) mice were orally supplemented with B. breve MCC1274 for four months. The short-term memory function was evaluated using a novel object recognition test. Amyloid plaques, amyloid-β (Aβ) levels, Aβ fibril, amyloid-β protein precursor and its processing enzymes, its metabolic products, glial activity, and cell proliferation in the subgranular zone of the dentate gyrus were evaluated by immunohistochemistry, Aβ ELISA, western blotting, and immunofluorescence staining. The mRNA expression levels of pro- and anti-inflammatory cytokines were determined by qRT-PCR analysis. RESULTS: We found that the oral B. breve MCC1 274 supplementation prevented memory impairment in App(NL-G-F) mice and decreased hippocampal Aβ levels through the enhancement of the a-disintegrin and metalloproteinase 10 (ADAM10) level. Moreover, administration of the probiotic activated the ERK/HIF-1α signaling pathway responsible for increasing the ADAM10 level and also attenuated microglial activation, which in turn led to reduction in the mRNA expression levels of pro-inflammatory cytokines in the brain. In addition, B. breve MCC1274 supplementation increased the level of synaptic proteins in the hippocampus. CONCLUSION: Our findings support the possibility that oral B. breve MCC1274 supplementation might be used as a potential preventive therapy for AD progression.