Cargando…

Prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver

Non-alcoholic steatohepatitis (NASH) is a most common chronic liver disease that is manifested by steatosis, inflammation, fibrosis, and tissue damage. Hepatocytes produce giant mitochondria termed megamitochondria in patients with NASH. It has been shown that gene knockout of OPA1, a mitochondrial...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamada, Tatsuya, Murata, Daisuke, Kleiner, David E., Anders, Robert, Rosenberg, Avi Z., Kaplan, Jeffrey, Hamilton, James P., Aghajan, Mariam, Levi, Moshe, Wang, Nae-Yuh, Dawson, Ted M., Yanagawa, Toru, Powers, Andrew F., Iijima, Miho, Sesaki, Hiromi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927900/
https://www.ncbi.nlm.nih.gov/pubmed/35310936
http://dx.doi.org/10.1016/j.isci.2022.103996
_version_ 1784670543248621568
author Yamada, Tatsuya
Murata, Daisuke
Kleiner, David E.
Anders, Robert
Rosenberg, Avi Z.
Kaplan, Jeffrey
Hamilton, James P.
Aghajan, Mariam
Levi, Moshe
Wang, Nae-Yuh
Dawson, Ted M.
Yanagawa, Toru
Powers, Andrew F.
Iijima, Miho
Sesaki, Hiromi
author_facet Yamada, Tatsuya
Murata, Daisuke
Kleiner, David E.
Anders, Robert
Rosenberg, Avi Z.
Kaplan, Jeffrey
Hamilton, James P.
Aghajan, Mariam
Levi, Moshe
Wang, Nae-Yuh
Dawson, Ted M.
Yanagawa, Toru
Powers, Andrew F.
Iijima, Miho
Sesaki, Hiromi
author_sort Yamada, Tatsuya
collection PubMed
description Non-alcoholic steatohepatitis (NASH) is a most common chronic liver disease that is manifested by steatosis, inflammation, fibrosis, and tissue damage. Hepatocytes produce giant mitochondria termed megamitochondria in patients with NASH. It has been shown that gene knockout of OPA1, a mitochondrial dynamin-related GTPase that mediates mitochondrial fusion, prevents megamitochondria formation and liver damage in a NASH mouse model induced by a methionine-choline-deficient (MCD) diet. However, it is unknown whether blocking mitochondrial fusion mitigates NASH pathologies. Here, we acutely depleted OPA1 using antisense oligonucleotides in the NASH mouse model before or after megamitochondria formation. When OPA1 ASOs were applied at the disease onset, they effectively prevented megamitochondria formation and liver pathologies in the MCD model. Notably, even when applied after mice robustly developed NASH pathologies, OPA1 targeting effectively regressed megamitochondria and the disease phenotypes. Thus, our data show the efficacy of mitochondrial dynamics as a unique therapy for megamitochondria-associated liver disease.
format Online
Article
Text
id pubmed-8927900
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-89279002022-03-18 Prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver Yamada, Tatsuya Murata, Daisuke Kleiner, David E. Anders, Robert Rosenberg, Avi Z. Kaplan, Jeffrey Hamilton, James P. Aghajan, Mariam Levi, Moshe Wang, Nae-Yuh Dawson, Ted M. Yanagawa, Toru Powers, Andrew F. Iijima, Miho Sesaki, Hiromi iScience Article Non-alcoholic steatohepatitis (NASH) is a most common chronic liver disease that is manifested by steatosis, inflammation, fibrosis, and tissue damage. Hepatocytes produce giant mitochondria termed megamitochondria in patients with NASH. It has been shown that gene knockout of OPA1, a mitochondrial dynamin-related GTPase that mediates mitochondrial fusion, prevents megamitochondria formation and liver damage in a NASH mouse model induced by a methionine-choline-deficient (MCD) diet. However, it is unknown whether blocking mitochondrial fusion mitigates NASH pathologies. Here, we acutely depleted OPA1 using antisense oligonucleotides in the NASH mouse model before or after megamitochondria formation. When OPA1 ASOs were applied at the disease onset, they effectively prevented megamitochondria formation and liver pathologies in the MCD model. Notably, even when applied after mice robustly developed NASH pathologies, OPA1 targeting effectively regressed megamitochondria and the disease phenotypes. Thus, our data show the efficacy of mitochondrial dynamics as a unique therapy for megamitochondria-associated liver disease. Elsevier 2022-02-26 /pmc/articles/PMC8927900/ /pubmed/35310936 http://dx.doi.org/10.1016/j.isci.2022.103996 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Yamada, Tatsuya
Murata, Daisuke
Kleiner, David E.
Anders, Robert
Rosenberg, Avi Z.
Kaplan, Jeffrey
Hamilton, James P.
Aghajan, Mariam
Levi, Moshe
Wang, Nae-Yuh
Dawson, Ted M.
Yanagawa, Toru
Powers, Andrew F.
Iijima, Miho
Sesaki, Hiromi
Prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver
title Prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver
title_full Prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver
title_fullStr Prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver
title_full_unstemmed Prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver
title_short Prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver
title_sort prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927900/
https://www.ncbi.nlm.nih.gov/pubmed/35310936
http://dx.doi.org/10.1016/j.isci.2022.103996
work_keys_str_mv AT yamadatatsuya preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT muratadaisuke preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT kleinerdavide preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT andersrobert preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT rosenbergaviz preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT kaplanjeffrey preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT hamiltonjamesp preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT aghajanmariam preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT levimoshe preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT wangnaeyuh preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT dawsontedm preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT yanagawatoru preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT powersandrewf preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT iijimamiho preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver
AT sesakihiromi preventionandregressionofmegamitochondriaandsteatosisbyblockingmitochondrialfusionintheliver