Cargando…
A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum
Astrocytes in the adult brain show cellular plasticity; however, whether they have the potential to generate multiple lineages remains unclear. Here, we perform in vivo screens and identify DLX2 as a transcription factor that can unleash the multipotentiality of adult resident astrocytes. Genetic li...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931246/ https://www.ncbi.nlm.nih.gov/pubmed/35254903 http://dx.doi.org/10.1073/pnas.2107339119 |
Sumario: | Astrocytes in the adult brain show cellular plasticity; however, whether they have the potential to generate multiple lineages remains unclear. Here, we perform in vivo screens and identify DLX2 as a transcription factor that can unleash the multipotentiality of adult resident astrocytes. Genetic lineage tracing and time-course analyses reveal that DLX2 enables astrocytes to rapidly become ASCL1(+) neural progenitor cells, which give rise to neurons, astrocytes, and oligodendrocytes in the adult mouse striatum. Single-cell transcriptomics and pseudotime trajectories further confirm a neural stem cell-like behavior of reprogrammed astrocytes, transitioning from quiescence to activation, proliferation, and neurogenesis. Gene regulatory networks and mouse genetics identify and confirm key nodes mediating DLX2-dependent fate reprogramming. These include activation of endogenous DLX family transcription factors and suppression of Notch signaling. Such reprogramming-induced multipotency of resident glial cells may be exploited for neural regeneration. |
---|