Cargando…
Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning
Drug-target interaction (DTI) prediction plays a crucial role in drug repositioning and virtual drug screening. Most DTI prediction methods cast the problem as a binary classification task to predict if interactions exist or as a regression task to predict continuous values that indicate a drug'...
Autores principales: | Thafar, Maha A., Alshahrani, Mona, Albaradei, Somayah, Gojobori, Takashi, Essack, Magbubah, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934358/ https://www.ncbi.nlm.nih.gov/pubmed/35306525 http://dx.doi.org/10.1038/s41598-022-08787-9 |
Ejemplares similares
-
DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
por: Thafar, Maha A., et al.
Publicado: (2021) -
Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models
por: Albaradei, Somayah, et al.
Publicado: (2021) -
Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities
por: Thafar, Maha, et al.
Publicado: (2019) -
Exploiting machine learning models to identify novel Alzheimer’s disease biomarkers and potential targets
por: Alamro, Hind, et al.
Publicado: (2023) -
Machine learning and deep learning methods that use omics data for metastasis prediction
por: Albaradei, Somayah, et al.
Publicado: (2021)