Cargando…
CRISPRpas: programmable regulation of alternative polyadenylation by dCas9
Most human protein-coding genes produce alternative polyadenylation (APA) isoforms that differ in 3′ UTR size or, when coupled with splicing, have variable coding sequences. APA is an important layer of gene expression program critical for defining cell identity. Here, by using a catalytically dead...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934653/ https://www.ncbi.nlm.nih.gov/pubmed/34244761 http://dx.doi.org/10.1093/nar/gkab519 |
Sumario: | Most human protein-coding genes produce alternative polyadenylation (APA) isoforms that differ in 3′ UTR size or, when coupled with splicing, have variable coding sequences. APA is an important layer of gene expression program critical for defining cell identity. Here, by using a catalytically dead Cas9 and coupling its target site with polyadenylation site (PAS), we develop a method, named CRISPRpas, to alter APA isoform abundance. CRISPRpas functions by enhancing proximal PAS usage, whose efficiency is influenced by several factors, including targeting strand of DNA, distance between PAS and target sequence and strength of the PAS. For intronic polyadenylation (IPA), splicing features, such as strengths of 5′ splice site and 3′ splice site, also affect CRISPRpas efficiency. We show modulation of APA of multiple endogenous genes, including IPA of PCF11, a master regulator of APA and gene expression. In sum, CRISPRpas offers a programmable tool for APA regulation that impacts gene expression. |
---|