Cargando…

Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in Type 1 Diabetes

Type 1 Diabetes (T1D) is an autoimmune disease in which immune cells destroy insulin-producing beta cells. The etiology of this complex disease is dependent on the interplay of multiple heterogeneous cell types in the pancreatic environment. Here, we provide a single-cell atlas of pancreatic islets...

Descripción completa

Detalles Bibliográficos
Autores principales: Fasolino, Maria, Schwartz, Gregory W., Patil, Abhijeet R., Mongia, Aanchal, Golson, Maria L., Wang, Yue J., Morgan, Ashleigh, Liu, Chengyang, Schug, Jonathan, Liu, Jinping, Wu, Minghui, Traum, Daniel, Kondo, Ayano, May, Catherine L., Goldman, Naomi, Wang, Wenliang, Feldman, Michael, Moore, Jason H., Japp, Alberto S., Betts, Michael R., Faryabi, Robert B., Naji, Ali, Kaestner, Klaus H., Vahedi, Golnaz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938904/
https://www.ncbi.nlm.nih.gov/pubmed/35228745
http://dx.doi.org/10.1038/s42255-022-00531-x
_version_ 1784672646086000640
author Fasolino, Maria
Schwartz, Gregory W.
Patil, Abhijeet R.
Mongia, Aanchal
Golson, Maria L.
Wang, Yue J.
Morgan, Ashleigh
Liu, Chengyang
Schug, Jonathan
Liu, Jinping
Wu, Minghui
Traum, Daniel
Kondo, Ayano
May, Catherine L.
Goldman, Naomi
Wang, Wenliang
Feldman, Michael
Moore, Jason H.
Japp, Alberto S.
Betts, Michael R.
Faryabi, Robert B.
Naji, Ali
Kaestner, Klaus H.
Vahedi, Golnaz
author_facet Fasolino, Maria
Schwartz, Gregory W.
Patil, Abhijeet R.
Mongia, Aanchal
Golson, Maria L.
Wang, Yue J.
Morgan, Ashleigh
Liu, Chengyang
Schug, Jonathan
Liu, Jinping
Wu, Minghui
Traum, Daniel
Kondo, Ayano
May, Catherine L.
Goldman, Naomi
Wang, Wenliang
Feldman, Michael
Moore, Jason H.
Japp, Alberto S.
Betts, Michael R.
Faryabi, Robert B.
Naji, Ali
Kaestner, Klaus H.
Vahedi, Golnaz
author_sort Fasolino, Maria
collection PubMed
description Type 1 Diabetes (T1D) is an autoimmune disease in which immune cells destroy insulin-producing beta cells. The etiology of this complex disease is dependent on the interplay of multiple heterogeneous cell types in the pancreatic environment. Here, we provide a single-cell atlas of pancreatic islets of 24 T1D, autoantibody-positive, and non-diabetic organ donors across multiple quantitative modalities including ~80,000 cells using single-cell transcriptomics, ~7,000,000 cells using cytometry by time-of-flight, and ~1,000,000 cells using in situ imaging mass cytometry. We develop an advanced integrative analytical strategy to assess pancreatic islets and identify canonical cell types. We show that a subset of exocrine ductal cells acquires a signature of tolerogenic dendritic cells in an apparent attempt at immune suppression in T1D donors. Our multimodal analyses delineate cell types and processes that may contribute to T1D immunopathogenesis and provide an integrative procedure for exploration and discovery of human pancreas function.
format Online
Article
Text
id pubmed-8938904
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-89389042022-08-28 Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in Type 1 Diabetes Fasolino, Maria Schwartz, Gregory W. Patil, Abhijeet R. Mongia, Aanchal Golson, Maria L. Wang, Yue J. Morgan, Ashleigh Liu, Chengyang Schug, Jonathan Liu, Jinping Wu, Minghui Traum, Daniel Kondo, Ayano May, Catherine L. Goldman, Naomi Wang, Wenliang Feldman, Michael Moore, Jason H. Japp, Alberto S. Betts, Michael R. Faryabi, Robert B. Naji, Ali Kaestner, Klaus H. Vahedi, Golnaz Nat Metab Article Type 1 Diabetes (T1D) is an autoimmune disease in which immune cells destroy insulin-producing beta cells. The etiology of this complex disease is dependent on the interplay of multiple heterogeneous cell types in the pancreatic environment. Here, we provide a single-cell atlas of pancreatic islets of 24 T1D, autoantibody-positive, and non-diabetic organ donors across multiple quantitative modalities including ~80,000 cells using single-cell transcriptomics, ~7,000,000 cells using cytometry by time-of-flight, and ~1,000,000 cells using in situ imaging mass cytometry. We develop an advanced integrative analytical strategy to assess pancreatic islets and identify canonical cell types. We show that a subset of exocrine ductal cells acquires a signature of tolerogenic dendritic cells in an apparent attempt at immune suppression in T1D donors. Our multimodal analyses delineate cell types and processes that may contribute to T1D immunopathogenesis and provide an integrative procedure for exploration and discovery of human pancreas function. 2022-02 2022-02-28 /pmc/articles/PMC8938904/ /pubmed/35228745 http://dx.doi.org/10.1038/s42255-022-00531-x Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
spellingShingle Article
Fasolino, Maria
Schwartz, Gregory W.
Patil, Abhijeet R.
Mongia, Aanchal
Golson, Maria L.
Wang, Yue J.
Morgan, Ashleigh
Liu, Chengyang
Schug, Jonathan
Liu, Jinping
Wu, Minghui
Traum, Daniel
Kondo, Ayano
May, Catherine L.
Goldman, Naomi
Wang, Wenliang
Feldman, Michael
Moore, Jason H.
Japp, Alberto S.
Betts, Michael R.
Faryabi, Robert B.
Naji, Ali
Kaestner, Klaus H.
Vahedi, Golnaz
Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in Type 1 Diabetes
title Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in Type 1 Diabetes
title_full Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in Type 1 Diabetes
title_fullStr Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in Type 1 Diabetes
title_full_unstemmed Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in Type 1 Diabetes
title_short Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in Type 1 Diabetes
title_sort single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938904/
https://www.ncbi.nlm.nih.gov/pubmed/35228745
http://dx.doi.org/10.1038/s42255-022-00531-x
work_keys_str_mv AT fasolinomaria singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT schwartzgregoryw singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT patilabhijeetr singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT mongiaaanchal singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT golsonmarial singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT wangyuej singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT morganashleigh singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT liuchengyang singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT schugjonathan singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT liujinping singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT wuminghui singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT traumdaniel singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT kondoayano singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT maycatherinel singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT goldmannaomi singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT wangwenliang singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT feldmanmichael singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT moorejasonh singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT jappalbertos singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT bettsmichaelr singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT faryabirobertb singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT najiali singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT kaestnerklaush singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes
AT vahedigolnaz singlecellmultiomicsanalysisofhumanpancreaticisletsrevealsnovelcellularstatesintype1diabetes