Cargando…
Overcoming the Barriers That Obscure the Interlinking and Analysis of Clinical Data Through Harmonization and Incremental Learning
Goal: To present a framework for data sharing, curation, harmonization and federated data analytics to solve open issues in healthcare, such as, the development of robust disease prediction models. Methods: Data curation is applied to remove data inconsistencies. Lexical and semantic matching method...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940202/ https://www.ncbi.nlm.nih.gov/pubmed/35402941 http://dx.doi.org/10.1109/OJEMB.2020.2981258 |