Cargando…
Exposure-response modeling improves selection of radiation and radiosensitizer combinations
A central question in drug discovery is how to select drug candidates from a large number of available compounds. This analysis presents a model-based approach for comparing and ranking combinations of radiation and radiosensitizers. The approach is quantitative and based on the previously-derived T...
Autores principales: | Cardilin, Tim, Almquist, Joachim, Jirstrand, Mats, Zimmermann, Astrid, Lignet, Floriane, El Bawab, Samer, Gabrielsson, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940791/ https://www.ncbi.nlm.nih.gov/pubmed/34623558 http://dx.doi.org/10.1007/s10928-021-09784-7 |
Ejemplares similares
-
Modeling long-term tumor growth and kill after combinations of radiation and radiosensitizing agents
por: Cardilin, Tim, et al.
Publicado: (2019) -
Model-based assessment of combination therapies – ranking of radiosensitizing agents in oncology
por: Baaz, Marcus, et al.
Publicado: (2023) -
Model‐Based Evaluation of Radiation and Radiosensitizing Agents in Oncology
por: Cardilin, Tim, et al.
Publicado: (2017) -
Optimized scaling of translational factors in oncology: from xenografts to RECIST
por: Baaz, Marcus, et al.
Publicado: (2022) -
Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats
por: Leander, Jacob, et al.
Publicado: (2015)