Cargando…

The Different Contributors to Antioxidant Activity in Thermally Dried Flesh and Peel of Astringent Persimmon Fruit

In the thermal-drying processing of astringent persimmon fruit, the tissue-specific changes in the key antioxidants have hardly been investigated, while they have been well investigated in the flesh. We report here the different patterns of the antioxidant activities in the thermally processed flesh...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, You Jin, Eom, Seok Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945473/
https://www.ncbi.nlm.nih.gov/pubmed/35326247
http://dx.doi.org/10.3390/antiox11030597
Descripción
Sumario:In the thermal-drying processing of astringent persimmon fruit, the tissue-specific changes in the key antioxidants have hardly been investigated, while they have been well investigated in the flesh. We report here the different patterns of the antioxidant activities in the thermally processed flesh and peel of astringent persimmon, with analyses of the carotenoids, the condensed and hydrolysable tannins, and the total phenolics and flavonoids. The persimmon powders presented different colors on the basis of the drying temperatures: brown in 30 °C; light yellow in 60 °C; and dark brown in 90 °C, respectively. Non-maillard reaction and reduction of carotenoids caused the light-yellow color of 60 °C dried persimmon. Thermal drying reduced the antioxidant activities of the flesh in a temperature-dependent manner, with decreases in the carotenoids, the condensed and hydrolysable tannins, and the total phenolics and flavonoids, whereas it enhanced the antioxidant activities of the peel. The increase in the antioxidant activities in the peel were mainly the result of the increase in the total phenolics by the thermal effect, and especially in the content of the hydrolysable tannins, although the thermal processing decreased the other components. The heat-induced increase of antioxidant activity in the peel showed a strong significant correlation only with the contents of total phenolics (r(2) = 0.9493) and total hydrolysable tannins (r(2) = 0.9288), suggesting that the main antioxidant contributors differ from the flesh.