Cargando…
Aurasperone A Inhibits SARS CoV-2 In Vitro: An Integrated In Vitro and In Silico Study
Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC(50) = 12.25 µM) with comparable activity with the positive control remdesivir (IC(50) =...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949533/ https://www.ncbi.nlm.nih.gov/pubmed/35323478 http://dx.doi.org/10.3390/md20030179 |
Sumario: | Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC(50) = 12.25 µM) with comparable activity with the positive control remdesivir (IC(50) = 10.11 µM). Aurasperone A exerted minimal cytotoxicity on Vero E6 cells (CC(50) = 32.36 mM, SI = 2641.5) and it was found to be much safer than remdesivir (CC(50) = 415.22 µM, SI = 41.07). To putatively highlight its molecular target, aurasperone A was subjected to molecular docking against several key-viral protein targets followed by a series of molecular dynamics-based in silico experiments that suggested M(pro) to be its primary viral protein target. More potent anti-SARS CoV-2 M(pro) inhibitors can be developed according to our findings presented in the present investigation. |
---|