Cargando…
Customizable FPGA-Based Hardware Accelerator for Standard Convolution Processes Empowered with Quantization Applied to LiDAR Data
In recent years there has been an increase in the number of research and developments in deep learning solutions for object detection applied to driverless vehicles. This application benefited from the growing trend felt in innovative perception solutions, such as LiDAR sensors. Currently, this is t...
Autores principales: | Silva, João, Pereira, Pedro, Machado, Rui, Névoa, Rafael, Melo-Pinto, Pedro, Fernandes, Duarte |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949891/ https://www.ncbi.nlm.nih.gov/pubmed/35336357 http://dx.doi.org/10.3390/s22062184 |
Ejemplares similares
-
LiDAR Echo Gaussian Decomposition Algorithm for FPGA Implementation
por: Zhou, Guoqing, et al.
Publicado: (2022) -
Real-Time 3D Object Detection and SLAM Fusion in a Low-Cost LiDAR Test Vehicle Setup
por: Fernandes, Duarte, et al.
Publicado: (2021) -
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022) -
Deep Learned Quantization-Based Codec for 3D Airborne LiDAR Point Cloud Images
por: Tamilmathi, A. Christoper, et al.
Publicado: (2021) -
Hardware Accelerated Compression of LIDAR Data Using FPGA Devices
por: Biasizzo, Anton, et al.
Publicado: (2013)