Cargando…
Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment
Mesenchymal stromal cells (MSC) ‘educated’ by tumor cells are an essential component of the multiple myeloma (MM) tumor microenvironment (TME) involved in tumor progression. Transcription of tandemly repeated (TR) non-coding DNA is often activated in many tumors and is required for tumor progression...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951104/ https://www.ncbi.nlm.nih.gov/pubmed/35328779 http://dx.doi.org/10.3390/ijms23063359 |
_version_ | 1784675303497400320 |
---|---|
author | Enukashvily, Natella I. Semenova, Natalia Chubar, Anna V. Ostromyshenskii, Dmitry I. Gushcha, Ekaterina A. Gritsaev, Sergei Bessmeltsev, Stanislav S. Rugal, Viktor I. Prikhodko, Egor M. Kostroma, Ivan Zherniakova, Anastasia Kotova, Anastasia V. Belik, Liubov A. Shumeev, Alexander Maslennikova, Irina I. Ivolgin, Dmitry I. |
author_facet | Enukashvily, Natella I. Semenova, Natalia Chubar, Anna V. Ostromyshenskii, Dmitry I. Gushcha, Ekaterina A. Gritsaev, Sergei Bessmeltsev, Stanislav S. Rugal, Viktor I. Prikhodko, Egor M. Kostroma, Ivan Zherniakova, Anastasia Kotova, Anastasia V. Belik, Liubov A. Shumeev, Alexander Maslennikova, Irina I. Ivolgin, Dmitry I. |
author_sort | Enukashvily, Natella I. |
collection | PubMed |
description | Mesenchymal stromal cells (MSC) ‘educated’ by tumor cells are an essential component of the multiple myeloma (MM) tumor microenvironment (TME) involved in tumor progression. Transcription of tandemly repeated (TR) non-coding DNA is often activated in many tumors and is required for tumor progression and cancer cells genome reorganization. The aim of the work was to study functional properties including the TR DNA transcription profile of MSC from the hematopoietic niche of treated MM patients. Healthy donors (HD) and patients after bortezomib-based treatment (with partial or complete response, PoCR, and non-responders, NR) were enrolled in the study. Their trephine biopsies were examined histologically to evaluate the hematopoietic niche. MSC cultures obtained from the biopsies were used for evaluation of the proliferation rate, osteogenic differentiation, presence of tumor MSC markers, resistance to bortezomib, and pericentromeric TR DNA transcription level. The MSC ‘education’ by multiple myeloma cells was mimicked in co-culture experiments with or without bortezomib. The TR DNA transcription profile was accessed. The histological examination revealed the persistence of the tumor microenvironment (especially of the vasculature) in treated patients. In co-culture experiments, MSC of bortezomib-treated patients were more resistant to bortezomib and protected cancer MM cells of the RPMI8226 cell line more effectively than HD-MSC did. The MSC obtained from PoCR and NR samples differed in their functional properties (proliferation capacity, osteogenic potential, and cancer-associated fibroblasts markers). Transcriptome analysis revealed activation of the TR transcription in cells of non-hematopoietic origin from NR patients’ bone marrow. The pericentromeric TR DNA of HS2/HS3 families was among the most upregulated in stromal MSC but not in cancer cells. The highest level of transcription was observed in NR-MSC. Transcription of HS2/HS3 was not detected in healthy donors MSC unless they were co-cultured with MM cancer cells and acquired cancer-associated phenotype. Treatment with TNFα downregulated HS2/HS3 transcription in MSC and upregulated in MM cells. Our results suggest that the hematopoietic niche retains the cancer-associated phenotype after treatment. Pericentromeric non-coding DNA transcription is associated with the MSC cancer-associated phenotype in patients with ineffective or partially effective multiple myeloma treatment. |
format | Online Article Text |
id | pubmed-8951104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89511042022-03-26 Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment Enukashvily, Natella I. Semenova, Natalia Chubar, Anna V. Ostromyshenskii, Dmitry I. Gushcha, Ekaterina A. Gritsaev, Sergei Bessmeltsev, Stanislav S. Rugal, Viktor I. Prikhodko, Egor M. Kostroma, Ivan Zherniakova, Anastasia Kotova, Anastasia V. Belik, Liubov A. Shumeev, Alexander Maslennikova, Irina I. Ivolgin, Dmitry I. Int J Mol Sci Article Mesenchymal stromal cells (MSC) ‘educated’ by tumor cells are an essential component of the multiple myeloma (MM) tumor microenvironment (TME) involved in tumor progression. Transcription of tandemly repeated (TR) non-coding DNA is often activated in many tumors and is required for tumor progression and cancer cells genome reorganization. The aim of the work was to study functional properties including the TR DNA transcription profile of MSC from the hematopoietic niche of treated MM patients. Healthy donors (HD) and patients after bortezomib-based treatment (with partial or complete response, PoCR, and non-responders, NR) were enrolled in the study. Their trephine biopsies were examined histologically to evaluate the hematopoietic niche. MSC cultures obtained from the biopsies were used for evaluation of the proliferation rate, osteogenic differentiation, presence of tumor MSC markers, resistance to bortezomib, and pericentromeric TR DNA transcription level. The MSC ‘education’ by multiple myeloma cells was mimicked in co-culture experiments with or without bortezomib. The TR DNA transcription profile was accessed. The histological examination revealed the persistence of the tumor microenvironment (especially of the vasculature) in treated patients. In co-culture experiments, MSC of bortezomib-treated patients were more resistant to bortezomib and protected cancer MM cells of the RPMI8226 cell line more effectively than HD-MSC did. The MSC obtained from PoCR and NR samples differed in their functional properties (proliferation capacity, osteogenic potential, and cancer-associated fibroblasts markers). Transcriptome analysis revealed activation of the TR transcription in cells of non-hematopoietic origin from NR patients’ bone marrow. The pericentromeric TR DNA of HS2/HS3 families was among the most upregulated in stromal MSC but not in cancer cells. The highest level of transcription was observed in NR-MSC. Transcription of HS2/HS3 was not detected in healthy donors MSC unless they were co-cultured with MM cancer cells and acquired cancer-associated phenotype. Treatment with TNFα downregulated HS2/HS3 transcription in MSC and upregulated in MM cells. Our results suggest that the hematopoietic niche retains the cancer-associated phenotype after treatment. Pericentromeric non-coding DNA transcription is associated with the MSC cancer-associated phenotype in patients with ineffective or partially effective multiple myeloma treatment. MDPI 2022-03-20 /pmc/articles/PMC8951104/ /pubmed/35328779 http://dx.doi.org/10.3390/ijms23063359 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Enukashvily, Natella I. Semenova, Natalia Chubar, Anna V. Ostromyshenskii, Dmitry I. Gushcha, Ekaterina A. Gritsaev, Sergei Bessmeltsev, Stanislav S. Rugal, Viktor I. Prikhodko, Egor M. Kostroma, Ivan Zherniakova, Anastasia Kotova, Anastasia V. Belik, Liubov A. Shumeev, Alexander Maslennikova, Irina I. Ivolgin, Dmitry I. Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment |
title | Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment |
title_full | Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment |
title_fullStr | Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment |
title_full_unstemmed | Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment |
title_short | Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment |
title_sort | pericentromeric non-coding dna transcription is associated with niche impairment in patients with ineffective or partially effective multiple myeloma treatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951104/ https://www.ncbi.nlm.nih.gov/pubmed/35328779 http://dx.doi.org/10.3390/ijms23063359 |
work_keys_str_mv | AT enukashvilynatellai pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT semenovanatalia pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT chubarannav pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT ostromyshenskiidmitryi pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT gushchaekaterinaa pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT gritsaevsergei pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT bessmeltsevstanislavs pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT rugalviktori pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT prikhodkoegorm pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT kostromaivan pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT zherniakovaanastasia pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT kotovaanastasiav pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT belikliubova pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT shumeevalexander pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT maslennikovairinai pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment AT ivolgindmitryi pericentromericnoncodingdnatranscriptionisassociatedwithnicheimpairmentinpatientswithineffectiveorpartiallyeffectivemultiplemyelomatreatment |