Cargando…
A UWB-Based Lighter-Than-Air Indoor Robot for User-Centered Interactive Applications
Features such as safety and longer flight times render lighter-than-air robots strong candidates for indoor navigation applications involving people. However, the existing interactive mobility solutions using such robots lack the capability to follow a long-distance user in a relatively larger indoo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951315/ https://www.ncbi.nlm.nih.gov/pubmed/35336264 http://dx.doi.org/10.3390/s22062093 |
_version_ | 1784675354455048192 |
---|---|
author | Naheem, Khawar Elsharkawy, Ahmed Koo, Dongwoo Lee, Yundong Kim, Munsang |
author_facet | Naheem, Khawar Elsharkawy, Ahmed Koo, Dongwoo Lee, Yundong Kim, Munsang |
author_sort | Naheem, Khawar |
collection | PubMed |
description | Features such as safety and longer flight times render lighter-than-air robots strong candidates for indoor navigation applications involving people. However, the existing interactive mobility solutions using such robots lack the capability to follow a long-distance user in a relatively larger indoor space. At the same time, the tracking data delivered to these robots are sensitive to uncertainties in indoor environments such as varying intensities of light and electromagnetic field disturbances. Regarding the above shortcomings, we proposed an ultra-wideband (UWB)-based lighter-than-air indoor robot for user-centered interactive applications. We developed the data processing scheme over a robot operating system (ROS) framework to accommodate the robot’s integration needs for a user-centered interactive application. In order to explore the user interaction with the robot at a long-distance, the dual interactions (i.e., user footprint following and user intention recognition) were proposed by equipping the user with a hand-held UWB sensor. Finally, experiments were conducted inside a professional arena to validate the robot’s pose tracking in which 3D positioning was compared with the 3D laser sensor, and to reveal the applicability of the user-centered autonomous following of the robot according to the dual interactions. |
format | Online Article Text |
id | pubmed-8951315 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89513152022-03-26 A UWB-Based Lighter-Than-Air Indoor Robot for User-Centered Interactive Applications Naheem, Khawar Elsharkawy, Ahmed Koo, Dongwoo Lee, Yundong Kim, Munsang Sensors (Basel) Article Features such as safety and longer flight times render lighter-than-air robots strong candidates for indoor navigation applications involving people. However, the existing interactive mobility solutions using such robots lack the capability to follow a long-distance user in a relatively larger indoor space. At the same time, the tracking data delivered to these robots are sensitive to uncertainties in indoor environments such as varying intensities of light and electromagnetic field disturbances. Regarding the above shortcomings, we proposed an ultra-wideband (UWB)-based lighter-than-air indoor robot for user-centered interactive applications. We developed the data processing scheme over a robot operating system (ROS) framework to accommodate the robot’s integration needs for a user-centered interactive application. In order to explore the user interaction with the robot at a long-distance, the dual interactions (i.e., user footprint following and user intention recognition) were proposed by equipping the user with a hand-held UWB sensor. Finally, experiments were conducted inside a professional arena to validate the robot’s pose tracking in which 3D positioning was compared with the 3D laser sensor, and to reveal the applicability of the user-centered autonomous following of the robot according to the dual interactions. MDPI 2022-03-08 /pmc/articles/PMC8951315/ /pubmed/35336264 http://dx.doi.org/10.3390/s22062093 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Naheem, Khawar Elsharkawy, Ahmed Koo, Dongwoo Lee, Yundong Kim, Munsang A UWB-Based Lighter-Than-Air Indoor Robot for User-Centered Interactive Applications |
title | A UWB-Based Lighter-Than-Air Indoor Robot for User-Centered Interactive Applications |
title_full | A UWB-Based Lighter-Than-Air Indoor Robot for User-Centered Interactive Applications |
title_fullStr | A UWB-Based Lighter-Than-Air Indoor Robot for User-Centered Interactive Applications |
title_full_unstemmed | A UWB-Based Lighter-Than-Air Indoor Robot for User-Centered Interactive Applications |
title_short | A UWB-Based Lighter-Than-Air Indoor Robot for User-Centered Interactive Applications |
title_sort | uwb-based lighter-than-air indoor robot for user-centered interactive applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951315/ https://www.ncbi.nlm.nih.gov/pubmed/35336264 http://dx.doi.org/10.3390/s22062093 |
work_keys_str_mv | AT naheemkhawar auwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications AT elsharkawyahmed auwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications AT koodongwoo auwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications AT leeyundong auwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications AT kimmunsang auwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications AT naheemkhawar uwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications AT elsharkawyahmed uwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications AT koodongwoo uwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications AT leeyundong uwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications AT kimmunsang uwbbasedlighterthanairindoorrobotforusercenteredinteractiveapplications |